List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2369835/publications.pdf Version: 2024-02-01

FARIO MORO

#	Article	IF	CITATIONS
1	Production and transport modelling of Po-210 in DEMO reactor. Nuclear Fusion, 2022, 62, 056022.	3.5	1
2	Risk Management of a Fusion Facility: Radiation Protection and Safety Integrated Approach for the Sorgentina-RF Project. Environments - MDPI, 2022, 9, 71.	3.3	4
3	Nuclear Analyses of ITER Diagnostics Lower Ports. IEEE Transactions on Plasma Science, 2022, , 1-6.	1.3	0
4	Nuclear Analyses for the Assessment of the Loads on the ITER Radial Neutron Camera In-Port System and Evaluation of Its Measurement Performances. IEEE Transactions on Plasma Science, 2022, 50, 4150-4156.	1.3	2
5	Nuclear Analysis for the Upper Ports in the NB Cell in ITER. IEEE Transactions on Plasma Science, 2022, 50, 4551-4556.	1.3	1
6	Development of a Novel MCNP-OSCAR Fusion Interface for the 3-D Assessment of Gamma Dose Due to the Activated Corrosion Products. IEEE Transactions on Plasma Science, 2022, 50, 4539-4544.	1.3	1
7	Preliminary evaluations of the environmental impact for the production of 99Mo by fusion neutrons. European Physical Journal Plus, 2021, 136, 1.	2.6	7
8	A novel approach to the study of magnetohydrodynamic effect on tritium transport in WCLL breeding blanket of DEMO. Fusion Engineering and Design, 2021, 167, 112334.	1.9	10
9	Nuclear performances of the water-cooled lithium lead DEMO reactor: Neutronic analysis on a fully heterogeneous model. Fusion Engineering and Design, 2021, 168, 112514.	1.9	20
10	Neutronics analysis and activation calculation for tungsten used in the DEMO divertor targets: A comparative study between the effects of WCLL and HCPB blanket, different W compositions and chromium. Fusion Engineering and Design, 2021, 169, 112428.	1.9	8
11	Neutron streaming analyses and shielding optimization through ECRH openings in DTT Tokamak building. Fusion Engineering and Design, 2021, 171, 112690.	1.9	1
12	SORGENTINA-RF project: fusion neutrons for \$\${}^{99}\$\$Mo medical radioisotope. European Physical Journal Plus, 2021, 136, 1.	2.6	13
13	The DEMO Water-Cooled Lead–Lithium Breeding Blanket: Design Status at the End of the Pre-Conceptual Design Phase. Applied Sciences (Switzerland), 2021, 11, 11592.	2.5	54
14	Comparison between measurement and calculations for a 14 MeV neutron water activation experiment. EPJ Web of Conferences, 2020, 239, 21002.	0.3	2
15	On the slowing down of 14 MeV neutrons. Journal of Neutron Research, 2020, 22, 249-256.	1.1	3
16	Neutronic analyses in support of the conceptual design of the DTT tokamak radial neutron camera. Fusion Engineering and Design, 2020, 157, 111629.	1.9	2
17	Neutronics related integration studies of EU-DEMO pellet injection system. Fusion Engineering and Design, 2020, 158, 111753.	1.9	1
18	Progress in development of advanced D1S dynamic code for three-dimensional shutdown dose rate calculations. Fusion Engineering and Design, 2020, 157, 111631.	1.9	5

#	Article	IF	CITATIONS
19	Nuclear analysis of the Water cooled lithium lead DEMO reactor. Fusion Engineering and Design, 2020, 160, 111833.	1.9	17
20	Thermo-hydraulic modeling of the ITER radial neutron camera. AIP Conference Proceedings, 2020, , .	0.4	0
21	Pre-analysis of the WCLL breeding blanket mock-up neutronics experiment at the frascati neutron generator. Fusion Engineering and Design, 2020, 156, 111600.	1.9	7
22	Nuclear analyses for the design of the ITER-like plasma facing components vertical targets of the DEMO divertor. Fusion Engineering and Design, 2020, 155, 111730.	1.9	16
23	Nuclear design of Divertor Tokamak Test (DTT) facility. Fusion Engineering and Design, 2020, 155, 111551.	1.9	20
24	Required, achievable and target TBR for the European DEMO. Fusion Engineering and Design, 2020, 155, 111553.	1.9	33
25	Measuring fast ions in fusion plasmas with neutron diagnostics at JET. Plasma Physics and Controlled Fusion, 2019, 61, 014027.	2.1	23
26	Contribution of random noise in the ITER RNC diamond neutron detectors pulses to the counting rate uncertainty. Fusion Engineering and Design, 2019, 146, 1454-1458.	1.9	1
27	Parametric study of the influence of First Wall cooling water on the Water Cooled Lithium Lead Breeding Blanket nuclear response. Fusion Engineering and Design, 2019, 146, 2070-2073.	1.9	5
28	Strategy and guidelines for the calibration of the ITER Radial Neutron Camera. Fusion Engineering and Design, 2019, 146, 2049-2052.	1.9	3
29	Activity and decay heat calculations for the European DEMO WCLL breeder blanket module including activated LiPb flow. Fusion Engineering and Design, 2019, 146, 2552-2556.	1.9	0
30	Nuclear analysis of the Single Module Segment WCLL DEMO. Fusion Engineering and Design, 2019, 147, 111207.	1.9	6
31	The ITER radial neutron camera in-port system: Nuclear analyses in support of its design development. Fusion Engineering and Design, 2019, 146, 236-241.	1.9	6
32	Neutronics study for DTT tokamak building. Fusion Engineering and Design, 2019, 146, 2581-2585.	1.9	8
33	Integral Benchmark Experiments on a Large Copper Block Using the GELINA Accelerator to Validate natCu Neutron Cross Sections From Different Neutron Cross-Sectional Databases. IEEE Transactions on Plasma Science, 2019, 47, 2943-2949.	1.3	0
34	Design and assembling of a magnetic circuit for a thermomagnetic motor apparatus. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	4
35	Neutronics studies for the novel design of lower port in DEMO. Fusion Engineering and Design, 2019, 146, 1394-1397.	1.9	3
36	A locked mode indicator for disruption prediction on JET and ASDEX upgrade. Fusion Engineering and Design, 2019, 138, 254-266.	1.9	8

FABIO MORO

#	Article	IF	CITATIONS
37	On the slowing-down of 14 MeV fusion neutrons: A spectrometry benchmark and perspectives on future neutron science facilities. Europhysics Letters, 2019, 126, 12001.	2.0	2
38	An active Bonner sphere spectrometer for intense neutron fields. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940, 302-306.	1.6	5
39	Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall. Nuclear Fusion, 2019, 59, 112021.	3.5	87
40	Addressing the feasibility of inboard direct-line injection of high-speed pellets, for core fueling of DEMO. Fusion Engineering and Design, 2019, 146, 2426-2429.	1.9	3
41	Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project. Fusion Engineering and Design, 2019, 146, 1805-1809.	1.9	126
42	Calibration and test of a 6LiF-diamond detector for the HCPB mock-up experiment at JET. Fusion Engineering and Design, 2019, 146, 1755-1758.	1.9	5
43	Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign. Nuclear Materials and Energy, 2019, 18, 258-261.	1.3	10
44	Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 045001.	1.5	1
45	Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 2019, 516, 202-213.	2.7	18
46	Analysis of the outer divertor hot spot activity in the protection video camera recordings at JET. Fusion Engineering and Design, 2019, 139, 115-123.	1.9	3
47	Improved neutron activation dosimetry for fusion. Fusion Engineering and Design, 2019, 139, 109-114.	1.9	7
48	Full-orbit and drift calculations of fusion product losses due to explosive fishbones on JET. Nuclear Fusion, 2019, 59, 016004.	3.5	9
49	Scenario development for the observation of alpha-driven instabilities in JET DT plasmas. Nuclear Fusion, 2018, 58, 082005.	3.5	34
50	Recent Progress in the WCLL Breeding Blanket Design for the DEMO Fusion Reactor. IEEE Transactions on Plasma Science, 2018, 46, 1446-1457.	1.3	49
51	MHD spectroscopy of JET plasmas with pellets via Alfvén eigenmodes. Nuclear Fusion, 2018, 58, 082008.	3.5	7
52	Evidence of9Be  +  pnuclear reactions during 2ωCHand hydrogen minority ICRH in JET-ILW hy deuterium plasmas. Nuclear Fusion, 2018, 58, 026033.	/drogen an	nd 3
53	TAE stability calculations compared to TAE antenna results in JET. Nuclear Fusion, 2018, 58, 082007.	3.5	11

⁵⁴Overview over DEMO design integration challenges and their impact on component design concepts.1.97754Fusion Engineering and Design, 2018, 136, 87-95.1.977

#	Article	IF	CITATIONS
55	High fusion performance at high <i>T</i> _i / <i>T</i> _e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing. Nuclear Fusion, 2018, 58, 036020.	3.5	23
56	Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium–tritium fusion plasma diagnostics. Measurement Science and Technology, 2018, 29, 045502.	2.6	35
57	Light impurity transport in JET ILW L-mode plasmas. Nuclear Fusion, 2018, 58, 036009.	3.5	13
58	14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source. Nuclear Fusion, 2018, 58, 026012.	3.5	22
59	Analysis of possible improvement of the plasma performance in JET due to the inward spatial channelling of fast-ion energy. Nuclear Fusion, 2018, 58, 076012.	3.5	8
60	Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas. Plasma Physics and Controlled Fusion, 2018, 60, 014032.	2.1	17
61	Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks—A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET. Nuclear Fusion, 2018, 58, 016014.	3.5	12
62	Advancements in DEMO WCLL breeding blanket design and integration. International Journal of Energy Research, 2018, 42, 27-52.	4.5	77
63	An improved model for the accurate calculation of parallel heat fluxes at the JET bulk tungsten outer divertor. Nuclear Fusion, 2018, 58, 106034.	3.5	6
64	Shutdown dose rate calculation along the ITER IVVS port. Fusion Engineering and Design, 2018, 136, 1404-1407.	1.9	0
65	Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas. Nuclear Fusion, 2018, 58, 026028.	3.5	17
66	Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model. Nuclear Fusion, 2018, 58, 096006.	3.5	41
67	Inter-ELM evolution of the edge current density in JET-ILW type I ELMy H-mode plasmas. Plasma Physics and Controlled Fusion, 2018, 60, 085003.	2.1	4
68	Equilibrium reconstruction at JET using Stokes model for polarimetry. Nuclear Fusion, 2018, 58, 106032.	3.5	20
69	Neutronic analyses in support of the WCLL DEMO design development. Fusion Engineering and Design, 2018, 136, 1260-1264.	1.9	30
70	Observation of enhanced ion particle transport in mixed H/D isotope plasmas on JET. Nuclear Fusion, 2018, 58, 076022.	3.5	20
71	High-Priority Prototype Testing in Support of System-Level Design Development of the ITER Radial Neutron Camera. IEEE Transactions on Plasma Science, 2018, 46, 1291-1297.	1.3	8
72	W transport and accumulation control in the termination phase of JET H-mode discharges and implications for ITER. Plasma Physics and Controlled Fusion, 2018, 60, 074008.	2.1	26

#	Article	IF	CITATIONS
73	Review of recent experimental and modeling advances in the understanding of lower hybrid current drive in ITER-relevant regimes. Nuclear Fusion, 2018, 58, 095003.	3.5	16
74	Thermo-structural design of the European DEMO water-cooled blanket with a multiscale-multiphysics framework. Fusion Engineering and Design, 2018, 135, 31-41.	1.9	10
75	Integrated modelling of H-mode pedestal and confinement in JET-ILW. Plasma Physics and Controlled Fusion, 2018, 60, 014042.	2.1	40
76	Electron acceleration in a JET disruption simulation. Nuclear Fusion, 2018, 58, 106022.	3.5	21
77	Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating. Nuclear Fusion, 2018, 58, 106037.	3.5	29
78	Observations and modelling of ion cyclotron emission observed in JET plasmas using a sub-harmonic arc detection system during ion cyclotron resonance heating. Nuclear Fusion, 2018, 58, 096020.	3.5	14
79	ITER oriented neutronics benchmark experiments on neutron streaming and shutdown dose rate at JET. Fusion Engineering and Design, 2017, 123, 171-176.	1.9	20
80	Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nature Physics, 2017, 13, 973-978.	16.7	73
81	Methodological approach for DEMO neutronics in the European PPPT programme: Tools, data and analyses. Fusion Engineering and Design, 2017, 123, 26-31.	1.9	30
82	Nuclear responses in the ITER IVVS port cell. Fusion Engineering and Design, 2017, 124, 645-648.	1.9	5
83	Neural network implementation for ITER neutron emissivity profile recognition. Fusion Engineering and Design, 2017, 123, 637-640.	1.9	5
84	WCLL breeding blanket design and integration for DEMO 2015: status and perspectives. Fusion Engineering and Design, 2017, 124, 682-686.	1.9	91
85	Nuclear analysis of the ITER radial neutron camera architectural options. Fusion Engineering and Design, 2017, 123, 1033-1038.	1.9	4
86	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.	3.5	150
87	Axisymmetric global Alfvén eigenmodes within the ellipticity-induced frequency gap in the Joint European Torus. Physics of Plasmas, 2017, 24, .	1.9	16
88	Copper benchmark experiment for the testing of JEFF-3.2 nuclear data for fusion applications. EPJ Web of Conferences, 2017, 146, 09004.	0.3	6
89	Characterization of the radiation field and evaluation of the nuclear responses in the ITER cryopump port cell. Fusion Engineering and Design, 2016, 109-111, 461-467.	1.9	7
90	Copper benchmark experiment at the Frascati Neutron Generator for nuclear data validation. Fusion Engineering and Design, 2016, 109-111, 843-847.	1.9	22

#	Article	IF	CITATIONS
91	Study of shielding options for lower ports for mitigation of neutron environment and shutdown dose inside the ITER cryostat. Fusion Engineering and Design, 2016, 109-111, 1408-1411.	1.9	8
92	Neutronics studies for the design of the European DEMO vacuum vessel. Fusion Engineering and Design, 2016, 109-111, 784-788.	1.9	4
93	Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant. Fusion Engineering and Design, 2016, 109-111, 1458-1463.	1.9	41
94	Neutronics experiments and analyses in preparation of DT operations at JET. Fusion Engineering and Design, 2016, 109-111, 895-905.	1.9	19
95	Diagnostics and control for the steady state and pulsed tokamak DEMO. Nuclear Fusion, 2016, 56, 026009.	3.5	45
96	Shielding proposal to reduce cross-talk from ITER lower port to equatorial port. Fusion Engineering and Design, 2015, 101, 67-72.	1.9	5
97	Comparison of Two Potassium-Filled Gas-Controlled Heat Pipes. International Journal of Thermophysics, 2015, 36, 3393-3403.	2.1	6
98	Nuclear analysis of the ITER Cryopump Ports. Fusion Engineering and Design, 2015, 98-99, 1561-1565.	1.9	6
99	Pre-analysis of the copper neutronics benchmark experiment for nuclear data validation. Fusion Engineering and Design, 2015, 98-99, 1964-1967.	1.9	4
100	Shutdown dose rates at ITER equatorial ports considering radiation cross-talk from torus cryopump lower port. Fusion Engineering and Design, 2015, 100, 501-506.	1.9	20
101	Nuclear analysis of ITER Test Blanket Module Port Plug. Fusion Engineering and Design, 2015, 98-99, 1668-1673.	1.9	5
102	Neutronic analyses and tools development efforts in the European DEMO programme. Fusion Engineering and Design, 2014, 89, 1880-1884.	1.9	24
103	The McCad Code for the Automatic Generation of MCNP 3-D Models: Applications in Fusion Neutronics. IEEE Transactions on Plasma Science, 2014, 42, 1036-1041.	1.3	9
104	Shutdown dose rate assessment with the Advanced D1S method: Development, applications and validation. Fusion Engineering and Design, 2014, 89, 2083-2087.	1.9	37
105	Nuclear analysis of the ITER full-tungsten divertor. Fusion Engineering and Design, 2013, 88, 2006-2010.	1.9	40
106	Impact of the layout of the ITER Radial Neutron Camera in-port system on the measurement of the neutron emissivity profile. Fusion Engineering and Design, 2013, 88, 1371-1376.	1.9	1
107	Applications of McCad for the automatic generation of MCNP 3D models in fusion neutronics. , 2013, , .		3
108	Results of an integration study of a diagnostics port plug in ITER. Fusion Engineering and Design, 2013, 88, 602-606.	1.9	3

#	Article	IF	CITATIONS
109	The IMERAPlus joint research project for determinations of the Boltzmann constant. , 2013, , .		5
110	Progress on the Integration of ITER Diagnostics Equatorial Port Plugs in Europe. IEEE Transactions on Plasma Science, 2012, 40, 665-672.	1.3	5
111	A Neutronics Shielding Mock-Up Experiment for Reduction of Uncertainty on the Prediction of the ITER-TFC Nuclear Heating. Fusion Science and Technology, 2012, 61, 124-128.	1.1	2
112	Traceability and Online Publication of Weather Station Measurements of Temperature, Pressure, and Humidity. International Journal of Thermophysics, 2012, 33, 1633-1641.	2.1	10
113	Neutronics analysis and nuclear heating measurement up to the TFC in a mock-up of the ITER inboard shield. Fusion Engineering and Design, 2012, 87, 910-915.	1.9	11
114	Shutdown dose rate benchmark experiment at JET to validate the three-dimensional Advanced-D1S method. Fusion Engineering and Design, 2012, 87, 1095-1100.	1.9	32
115	Neutronic analysis of the ITER Equatorial Port Plug 1. Fusion Engineering and Design, 2012, 87, 1224-1229.	1.9	7
116	Neutron measurements in ITER using the Radial Neutron Camera. Journal of Instrumentation, 2012, 7, C03033-C03033.	1.2	33
117	Progress on the integration of ITER diagnostics equatorial port plugs in Europe. , 2011, , .		1
118	Combined unfolding and spatial inversion of neutron camera measurements for ion temperature profile determination in ITER. Nuclear Fusion, 2011, 51, 053011.	3.5	21
119	Integral approach for neutronics analyses of the European test blanket modules in ITER. Fusion Engineering and Design, 2011, 86, 2176-2179.	1.9	11
120	Neutronic calculations in support of the design of the ITER High Resolution Neutron Spectrometer. Fusion Engineering and Design, 2011, 86, 1277-1281.	1.9	1
121	Preliminary neutronic analyses of ITER high resolution neutron spectrometer collimator. Fusion Engineering and Design, 2011, 86, 1204-1208.	1.9	0
122	Three-dimensional neutronic analysis of the ITER in-vessel coils. Fusion Engineering and Design, 2011, 86, 584-587.	1.9	8
123	Design and Capabilities of a Custom-Made Thermostat for a High-Accuracy Adiabatic Calorimeter. International Journal of Thermophysics, 2011, 32, 471-480.	2.1	1
124	Capabilities for Dielectric-Constant Gas Thermometry in a Special Large-Volume Liquid-Bath Thermostat. International Journal of Thermophysics, 2011, 32, 1355-1365.	2.1	11
125	Progress in INRiM Experiment for the Determination of the Boltzmann Constant with a Quasi-spherical Resonator. International Journal of Thermophysics, 2011, 32, 1339-1354.	2.1	22
126	Construction and Start-up of a Large-Volume Thermostat for Dielectric-Constant Gas Thermometry. International Journal of Thermophysics, 2010, 31, 1386-1395.	2.1	9

#	Article	IF	CITATIONS
127	Design and Capabilities of the Temperature Control System for the Italian Experiment Based on Precision Laser Spectroscopy for a New Determination of the Boltzmann Constant. International Journal of Thermophysics, 2010, 31, 1360-1370.	2.1	26
128	The radiation analyses of ITER lower ports. Fusion Engineering and Design, 2010, 85, 1085-1089.	1.9	1
129	A determination of the Boltzmann constant from speed of sound measurements in helium at a single thermodynamic state. Metrologia, 2010, 47, 387-409.	1.2	64
130	Neutronic Analysis of FAST. IEEE Transactions on Plasma Science, 2010, 38, 406-413.	1.3	6
131	The ITER radial neutron camera: An updated neutronic analysis. Fusion Engineering and Design, 2009, 84, 1351-1356.	1.9	20
132	Development of equatorial visible/infrared wide angle viewing system and radial neutron camera for ITER. Fusion Engineering and Design, 2009, 84, 1689-1696.	1.9	30
133	Neutronic analysis of iter cryopump system. Fusion Engineering and Design, 2009, 84, 1505-1509.	1.9	3
134	Neutronic analysis of the JT-60SA toroidal magnets. Fusion Engineering and Design, 2009, 84, 1947-1952.	1.9	19
135	Issues from activation/dose rates calculation for full W ITER machine and increased fluence. Fusion Engineering and Design, 2009, 84, 530-533.	1.9	4
136	Neutronic analysis of FAST. , 2009, , .		0
137	Measurements of light transmission in deep sea with the AC9 trasmissometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 487, 423-434.	1.6	38