Xing Yi Ling

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/236958/xing-yi-ling-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

127
papers7,624
citations44
h-index85
g-index132
ext. papers9,121
ext. citations10.4
avg, IF6.02
L-index

#	Paper	IF	Citations
127	Noninvasive and Point-of-Care Surface-Enhanced Raman Scattering (SERS)-Based Breathalyzer for Mass Screening of Coronavirus Disease 2019 (COVID-19) under 5 min <i>ACS Nano</i> , 2022 ,	16.7	11
126	Nanoplasmonic materials for surface-enhanced Raman scattering 2022 , 33-79		1
125	Tunable Plasmonic Metacrystals: Self-assembly, Plasmonic Properties, and Applications in Surface-enhanced Raman Scattering 2022 , 175-232		
124	Surface-Enhanced Raman Scattering (SERS) Taster: A Machine-Learning-Driven Multireceptor Platform for Multiplex Profiling of Wine Flavors. <i>Nano Letters</i> , 2021 , 21, 2642-2649	11.5	19
123	Plasmonic Nanoparticle-Metal © rganic Framework (NPMOF) Nanohybrid Platforms for Emerging Plasmonic Applications 2021 , 3, 557-573		9
122	Intensifying Heat Using MOF-Isolated Graphene for Solar-Driven Seawater Desalination at 98% Solar-to-Thermal Efficiency. <i>Advanced Functional Materials</i> , 2021 , 31, 2008904	15.6	23
121	Enantiospecific Molecular Fingerprinting Using Potential-Modulated Surface-Enhanced Raman Scattering to Achieve Label-Free Chiral Differentiation. <i>ACS Nano</i> , 2021 , 15, 1817-1825	16.7	8
120	ZIF-Induced d-Band Modification in a Bimetallic Nanocatalyst: Achieving Over 44 % Efficiency in the Ambient Nitrogen Reduction Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 17145-17151	3.6	15
119	ZIF-Induced d-Band Modification in a Bimetallic Nanocatalyst: Achieving Over 44 % Efficiency in the Ambient Nitrogen Reduction Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16997-1700	03 ^{6.4}	48
118	Applying a Nanoparticle@MOF Interface To Activate an Unconventional Regioselectivity of an Inert Reaction at Ambient Conditions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11521-11527	16.4	12
117	A wearable solar-thermal-pyroelectric harvester: Achieving high power output using modified rGO-PEI and polarized PVDF. <i>Nano Energy</i> , 2020 , 73, 104723	17.1	30
116	Differentiation of Multiplex Noncovalent Interactions Using SERS and Chemometrics. <i>ACS Applied Materials & Differentiation of Multiplex Noncovalent Interactions Using SERS and Chemometrics. ACS Applied Materials & Differentiation of Multiplex Noncovalent Interactions Using SERS and Chemometrics. <i>ACS Applied Materials & Differentiation of Multiplex Noncovalent Interactions Using SERS and Chemometrics. ACS Applied Materials & Differentiation of Multiplex Noncovalent Interactions Using SERS and Chemometrics. <i>ACS Applied Materials & Differentiation of Multiplex Noncovalent Interactions Using SERS and Chemometrics and Chemometrics and Chemometrics (Control of Chemometrics) (Control of Ch</i></i></i>	9.5	5
115	Two-Photon-Assisted Polymerization and Reduction: Emerging Formulations and Applications. <i>ACS Applied Materials & Discrete Applied & Discrete App</i>	9.5	21
114	Multiplex Surface-Enhanced Raman Scattering Identification and Quantification of Urine Metabolites in Patient Samples within 30 min. <i>ACS Nano</i> , 2020 , 14, 2542-2552	16.7	44
113	Turning Water from a Hindrance to the Promotor of Preferential Electrochemical Nitrogen Reduction. <i>Chemistry of Materials</i> , 2020 , 32, 1674-1683	9.6	16
112	Modulating Orientational Order to Organize Polyhedral Nanoparticles into Plastic Crystals and Uniform Metacrystals. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21183-21189	16.4	6
111	Modulating Orientational Order to Organize Polyhedral Nanoparticles into Plastic Crystals and Uniform Metacrystals. <i>Angewandte Chemie</i> , 2020 , 132, 21369-21375	3.6	2

110	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117	16.7	1000
109	Tracking Airborne Molecules from Afar: Three-Dimensional Metal-Organic Framework-Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring. <i>ACS Nano</i> , 2019 , 13, 12090-12099	16.7	43
108	Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage. <i>Accounts of Chemical Research</i> , 2019 , 52, 1844-1854	24.3	51
107	Graphene/graphene nanoribbon aerogels decorated with S-doped MoSe2 nanosheets as an efficient electrocatalyst for hydrogen evolution. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 1209-1216	6.8	9
106	Triboelectrically boosted SERS on sea-urchin-like gold clusters facilitated by a high dielectric substrate. <i>Nano Energy</i> , 2019 , 64, 103959	17.1	13
105	Plasmonic-induced overgrowth of amorphous molybdenum sulfide on nanoporous gold: An ambient synthesis method of hybrid nanoparticles with enhanced electrocatalytic activity. <i>Journal of Chemical Physics</i> , 2019 , 151, 244709	3.9	O
104	Mapping micrometer-scale wetting properties of superhydrophobic surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 25008-25012	11.5	11
103	Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. <i>Ultramicroscopy</i> , 2019 , 203, 44-51	3.1	22
102	Energy level engineering in transition-metal doped spinel-structured nanosheets for efficient overall water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 827-833	13	36
101	Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. <i>Chemical Society Reviews</i> , 2019 , 48, 731-756	58.5	247
100	Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. <i>Science Advances</i> , 2018 , 4, eaar3208	14.3	237
99	Plasmonic Hotspots in Air: An Omnidirectional Three-Dimensional Platform for Stand-Off In-Air SERS Sensing of Airborne Species. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5792-5796	16.4	25
98	Plasmonic nose: integrating the MOF-enabled molecular preconcentration effect with a plasmonic array for recognition of molecular-level volatile organic compounds. <i>Chemical Communications</i> , 2018 , 54, 2546-2549	5.8	65
97	Plasmonic Hotspots in Air: An Omnidirectional Three-Dimensional Platform for Stand-Off In-Air SERS Sensing of Airborne Species. <i>Angewandte Chemie</i> , 2018 , 130, 5894-5898	3.6	4
96	Self-supported MoS2@NHCF fiber-in-tube composites with tunable voids for efficient hydrogen evolution reaction. <i>Composites Communications</i> , 2018 , 9, 86-91	6.7	29
95	Creating two self-assembly micro-environments to achieve supercrystals with dual structures using polyhedral nanoparticles. <i>Nature Communications</i> , 2018 , 9, 2769	17.4	32
94	Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. <i>Nanoscale</i> , 2018 , 10, 16005-16012	7.7	11
93	Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels. <i>Nanoscale</i> , 2018 , 10, 575-581	7.7	33

92	Probing Plasmon-NV0 Coupling at the Nanometer Scale with Photons and Fast Electrons. <i>ACS Photonics</i> , 2018 , 5, 324-328	6.3	13
91	Concentrating Immiscible Molecules at Solid@MOF Interfacial Nanocavities to Drive an Inert GasIliquid Reaction at Ambient Conditions. <i>Angewandte Chemie</i> , 2018 , 130, 17304-17308	3.6	7
90	Concentrating Immiscible Molecules at Solid@MOF Interfacial Nanocavities to Drive an Inert Gas-Liquid Reaction at Ambient Conditions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 17058-	15062	27
89	A live bacteria SERS platform for the in situ monitoring of nitric oxide release from a single MRSA. <i>Chemical Communications</i> , 2018 , 54, 7022-7025	5.8	14
88	Online Flowing Colloidosomes for Sequential Multi-analyte High-Throughput SERS Analysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5565-5569	16.4	29
87	Online Flowing Colloidosomes for Sequential Multi-analyte High-Throughput SERS Analysis. <i>Angewandte Chemie</i> , 2017 , 129, 5657-5661	3.6	5
86	SERS- and Electrochemically Active 3D Plasmonic Liquid Marbles for Molecular-Level Spectroelectrochemical Investigation of Microliter Reactions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8813-8817	16.4	50
85	SERS- and Electrochemically Active 3D Plasmonic Liquid Marbles for Molecular-Level Spectroelectrochemical Investigation of Microliter Reactions. <i>Angewandte Chemie</i> , 2017 , 129, 8939-894	3 ^{.6}	10
84	Dynamic Rotating Liquid Marble for Directional and Enhanced Mass Transportation in Three-Dimensional Microliter Droplets. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 243-249	6.4	15
83	Revealing Cation-Exchange-Induced Phase Transformations in Multielemental Chalcogenide Nanoparticles. <i>Chemistry of Materials</i> , 2017 , 29, 9192-9199	9.6	16
82	Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes. <i>ACS Applied Materials & Acs Applied Mat</i>	9.5	28
81	Microchemical Plant in a Liquid Droplet: Plasmonic Liquid Marble for Sequential Reactions and Attomole Detection of Toxin at Microliter Scale. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 39635-	39 {540	24
80	Flexible Three-Dimensional Anticounterfeiting Plasmonic Security Labels: Utilizing Z-Axis-Dependent SERS Readouts to Encode Multilayered Molecular Information. <i>ACS Photonics</i> , 2017 , 4, 2529-2536	6.3	35
79	Constructing Soft Substrate-less Platforms Using Particle-Assembled Fluid Eluid Interfaces and Their Prospects in Multiphasic Applications. <i>Chemistry of Materials</i> , 2017 , 29, 6563-6577	9.6	9
78	Driving CO to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal-Organic Framework at 1 bar and 298 K. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1151	3 ¹ 645	18 ⁴³
77	Tuning Molecular-Level Polymer Conformations Enables Dynamic Control over Both the Interfacial Behaviors of Ag Nanocubes and Their Assembled Metacrystals. <i>Chemistry of Materials</i> , 2017 , 29, 6137-6	1244	14
76	Quantitative prediction of the position and orientation for an octahedral nanoparticle at liquid/liquid interfaces. <i>Nanoscale</i> , 2017 , 9, 11239-11248	7.7	8
75	Nanoporous Gold Bowls: A Kinetic Approach to Control Open Shell Structures and Size-Tunable Lattice Strain for Electrocatalytic Applications. <i>Small</i> , 2016 , 12, 4531-40	11	27

(2015-2016)

74	Promotion of the halide effect in the formation of shaped metal nanocrystals via a hybrid cationic, polymeric stabilizer: Octahedra, cubes, and anisotropic growth. <i>Surface Science</i> , 2016 , 648, 307-312	1.8	10
73	Formulating an Ideal Protein Photoresist for Fabricating Dynamic Microstructures with High Aspect Ratios and Uniform Responsiveness. <i>ACS Applied Materials & District Responsive Responsive Responsive Materials & District Responsive Responsive</i>	9.5	9
72	Combined stem-eels and stem-cl analysis of plasmonic coupling between chemically grown silver nanocubes 2016 , 917-918		
71	Assembling substrate-less plasmonic metacrystals at the oil/water interface for multiplex ultratrace analyte detection. <i>Analyst, The</i> , 2016 , 141, 5107-12	5	6
70	Isolating Reactions at the Picoliter Scale: Parallel Control of Reaction Kinetics at the Liquid Liquid Interface. <i>Angewandte Chemie</i> , 2016 , 128, 8444-8448	3.6	4
69	Localized and Continuous Tuning of Monolayer MoS2 Photoluminescence Using a Single Shape-Controlled Ag Nanoantenna. <i>Advanced Materials</i> , 2016 , 28, 701-6	24	62
68	Colloidal Gold Nanocups with Orientation-Dependent Plasmonic Properties. <i>Advanced Materials</i> , 2016 , 28, 6322-31	24	51
67	Isolating Reactions at the Picoliter Scale: Parallel Control of Reaction Kinetics at the Liquid-Liquid Interface. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8304-8	16.4	18
66	Manipulating the d-Band Electronic Structure of Platinum-Functionalized Nanoporous Gold Bowls: Synergistic Intermetallic Interactions Enhance Catalysis. <i>Chemistry of Materials</i> , 2016 , 28, 5080-5086	9.6	33
65	A Chemical Approach To Break the Planar Configuration of Ag Nanocubes into Tunable Two-Dimensional Metasurfaces. <i>Nano Letters</i> , 2016 , 16, 3872-8	11.5	46
64	Identifying Enclosed Chemical Reaction and Dynamics at the Molecular Level Using Shell-Isolated Miniaturized Plasmonic Liquid Marble. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1501-6	6.4	29
63	Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4312-4319	7.1	32
62	Spinning Liquid Marble and Its Dual Applications as Microcentrifuge and Miniature Localized Viscometer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 23941-6	9.5	25
61	Gold Nanocups: Colloidal Gold Nanocups with Orientation-Dependent Plasmonic Properties (Adv. Mater. 30/2016). <i>Advanced Materials</i> , 2016 , 28, 6266	24	2
60	Achieving Site-Specificity in Multistep Colloidal Synthesis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7624-7	16.4	66
59	Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. <i>Nature Communications</i> , 2015 , 6, 6990	17.4	111
58	Transformative Two-Dimensional Array Configurations by Geometrical Shape-Shifting Protein Microstructures. <i>ACS Nano</i> , 2015 , 9, 9708-17	16.7	21
57	Special issue on surface-enhanced Raman spectroscopy. <i>Journal of Optics (United Kingdom)</i> , 2015 , 17, 110201	1.7	2

56	Nanoporous Gold Nanoframes with Minimalistic Architectures: Lower Porosity Generates Stronger Surface-Enhanced Raman Scattering Capabilities. <i>Chemistry of Materials</i> , 2015 , 27, 7827-7834	9.6	46
55	Plasmonic Colloidosomes as Three-Dimensional SERS Platforms with Enhanced Surface Area for Multiphase Sub-Microliter Toxin Sensing. <i>Angewandte Chemie</i> , 2015 , 127, 9827-9831	3.6	31
54	Multiplex plasmonic anti-counterfeiting security labels based on surface-enhanced Raman scattering. <i>Chemical Communications</i> , 2015 , 51, 5363-6	5.8	74
53	Shape-shifting 3D protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation. <i>Small</i> , 2015 , 11, 740-8	11	40
52	Graphene Liquid Marbles as Photothermal Miniature Reactors for Reaction Kinetics Modulation. <i>Angewandte Chemie</i> , 2015 , 127, 4065-4068	3.6	18
51	Plasmonic Colloidosomes as Three-Dimensional SERS Platforms with Enhanced Surface Area for Multiphase Sub-Microliter Toxin Sensing. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9691-5	16.4	77
50	Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3993-6	16.4	80
49	Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles. <i>Small</i> , 2014 , 10, 2703-11	11	140
48	Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. <i>Nanoscale</i> , 2014 , 6, 4843-51	7.7	170
47	Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite CullnSnSlhanoparticles. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6684-92	16.4	112
46	Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications. <i>Nanoscale</i> , 2014 , 6, 282-8	7.7	136
45	Plasmonic Liquid Marbles: A Miniature Substrate-less SERS Platform for Quantitative and Multiplex Ultratrace Molecular Detection. <i>Angewandte Chemie</i> , 2014 , 126, 5154-5158	3.6	45
44	A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26983-90	3.6	37
43	Plasmonic Silver Nanowire Structures for Two-Dimensional Multiple-Digit Molecular Data Storage Application. <i>ACS Photonics</i> , 2014 , 1, 631-637	6.3	36
42	Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. <i>Chemical Communications</i> , 2014 , 50, 5923-6	5.8	58
41	Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water. <i>Nanoscale</i> , 2014 , 6, 8368-75	5 ^{7.7}	71
40	Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges. <i>Small</i> , 2014 , 10, 4940-50	11	29
39	Surfactant-directed atomic to mesoscale alignment: metal nanocrystals encased individually in single-crystalline porous nanostructures. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10561-4	16.4	133

(2009-2014)

38	One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance. <i>Nature Communications</i> , 2014 , 5, 4947	17.4	186
37	Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5054-8	16.4	71
36	Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor. <i>Analytical Chemistry</i> , 2014 , 86, 10437-44	7.8	56
35	Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. <i>Nano Research</i> , 2014 , 7, 132-143	10	33
34	Synthesis of Spiky AgAu Octahedral Nanoparticles and Their Tunable Optical Properties. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 16640-16649	3.8	42
33	Bimetallic platonic Janus nanocrystals. <i>Langmuir</i> , 2013 , 29, 12844-51	4	15
32	Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering. <i>Langmuir</i> , 2013 , 29, 7061-9	4	106
31	Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. <i>ACS Nano</i> , 2013 , 7, 5993-6000	16.7	197
30	Using the Langmuir-Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. <i>Nanoscale</i> , 2013 , 5, 6404-12	7.7	63
29	Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing. <i>ACS Applied Materials & Discrete Materials & Dis</i>	9.5	93
28	Oriented assembly of polyhedral plasmonic nanoparticle clusters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 6640-5	11.5	108
27	A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application. <i>Langmuir</i> , 2012 , 28, 14441-9	4	78
26	Atomic force microscopy of the morphology and mechanical behaviour of barnacle cyprid footprint proteins at the nanoscale. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 285-96	4.1	24
25	Chemically directed immobilization of nanoparticles onto gold substrates for orthogonal assembly using dithiocarbamate bond formation. <i>ACS Applied Materials & Discrete Material</i>	9.5	24
24	Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. <i>Journal of the American Chemical Society</i> , 2010 , 132, 268-74	16.4	537
23	3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask. <i>Nanoscale</i> , 2010 , 2, 1455-60	7.7	17
22	Chemically Directed Self-Assembly of Nanoparticle Structures on Surfaces 2010 , 405-431		1
21	Chemistry-Specific Interfacial Forces Between Barnacle (Semibalanus Balanoides) Cyprid Footprint Proteins and Chemically Functionalised AFM Tips 2009 , 85, 616-630		8

20	Fabrication of Freestanding Nanoporous Polyethersulfone Membranes Using Organometallic Polymer Resists Patterned by Nanosphere Lithography. <i>Advanced Materials</i> , 2009 , 21, 2064-2067	24	41
19	Free-standing 3D supramolecular hybrid particle structures. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 983-7	16.4	39
18	Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7677-82	16.4	108
17	Freestanding 3D supramolecular particle bridges: fabrication and mechanical behavior. <i>Small</i> , 2009 , 5, 1428-35	11	24
16	Stable and transparent superhydrophobic nanoparticle films. <i>Langmuir</i> , 2009 , 25, 3260-3	4	158
15	Transfer-printing and host-guest properties of 3D supramolecular particle structures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2009 , 1, 960-8	9.5	17
14	From supramolecular chemistry to nanotechnology: Assembly of 3D nanostructures. <i>Pure and Applied Chemistry</i> , 2009 , 81, 2225-2233	2.1	48
13	Microcontact printing of dendrimers, proteins, and nanoparticles by porous stamps. <i>Journal of the American Chemical Society</i> , 2009 , 131, 797-803	16.4	57
12	Fabrication of 3D supramolecular hybrid particle microstructures with controllable morphology and dimensions. <i>Chemical Communications</i> , 2009 , 5521-3	5.8	8
11	Free-standing porous supramolecular assemblies of nanoparticles made using a double-templating strategy. <i>Faraday Discussions</i> , 2009 , 143, 117-27; discussion 169-86	3.6	7
10	Reversible Attachment of Nanostructures at Molecular Printboards through Supramolecular Glue. <i>Chemistry of Materials</i> , 2008 , 20, 3574-3578	9.6	49
9	Supramolecular layer-by-layer assembly of 3D multicomponent nanostructures via multivalent molecular recognition. <i>International Journal of Molecular Sciences</i> , 2008 , 9, 486-97	6.3	25
8	Multivalent binding of small guest molecules and proteins to molecular printboards inside microchannels. <i>Chemistry - A European Journal</i> , 2008 , 14, 136-42	4.8	22
7	An in situ study of the adsorption behavior of functionalized particles on self-assembled monolayers via different chemical interactions. <i>Langmuir</i> , 2007 , 23, 9990-9	4	33
6	Patterning the molecular printboard: patterning cyclodextrin monolayers on silicon oxide using nanoimprint lithography and its application in 3D multilayer nanostructuring. <i>Nanotechnology</i> , 2007 , 18, 044007	3.4	38
5	Pt and PtRu nanoparticles deposited on single-wall carbon nanotubes for methanol electro-oxidation. <i>Journal of Power Sources</i> , 2007 , 167, 272-280	8.9	73
4	Ferrocenyl-functionalized silica nanoparticles: preparation, characterization, and molecular recognition at interfaces. <i>Langmuir</i> , 2006 , 22, 8777-83	4	55
3	Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells. Journal of Power Sources, 2005, 149, 1-7	8.9	123

LIST OF PUBLICATIONS

Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell. *Journal*of Physical Chemistry B, **2004**, 108, 8234-8240
3.4 599

Nanosized Pt and PtRu colloids as precursors for direct methanol fuel cell catalysts. *Journal of Materials Chemistry*, **2003**, 13, 3049

63