List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2369451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corrosion behaviour of Fe-25Cr alloy in wet CO2 gas at 650°C: Effects of chloride deposits and Si+Mn alloying addition. Corrosion Science, 2022, 195, 110001.	6.6	9
2	Effect of Temperature on Corrosion Behaviour of Fe–Cr Alloys in Wet CO2 With and Without HCl Gases. Oxidation of Metals, 2022, 97, 371-400.	2.1	7
3	Silicon Contamination During Alloy Oxidation in Water Vapour at 650°C. Oxidation of Metals, 2022, 97, 559-574.	2.1	6
4	Effects of Sulphate Deposits on Corrosion Behaviour of Fe-Based Alloys in Wet CO2 Gas at 750°C. Oxidation of Metals, 2021, 95, 23-43.	2.1	9
5	Effect of silicon on corrosion of Fe-20Cr and Fe-20Cr-20Ni alloys in wet CO2 with and without HCl at 650 ŰC. Corrosion Science, 2021, 179, 109096.	6.6	18
6	Effects of sulphate deposits on corrosion behaviour of Ni-base alloys in wet CO2 gas at 750 °C. Corrosion Science, 2021, 181, 109227.	6.6	8
7	The Effect of Water Vapor on NiO Formation by Ni–Cr Alloys at 650°C (HTCPM Focus Issue, FNS-111). Oxidation of Metals, 2021, 96, 57-68.	2.1	7
8	Corrosion Behavior of Cr-Containing Alloys under Cyclic Reaction in Wet CO2 Gas at 650°C. Oxidation of Metals, 2021, 96, 105-116.	2.1	1
9	Morphology of oxide scales formed on chromium-silicon alloys at high temperatures. Corrosion Science, 2020, 176, 109023.	6.6	19
10	Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800â€Â°C in dry CO2 gas. Corrosion Science, 2020, 173, 108777.	6.6	8
11	Corrosion behaviour of Ni-Cr alloys in mixed oxidising gases at 650â€ [−] °C. Corrosion Science, 2020, 174, 108801.	6.6	25
12	Effect of Hydrogen Chloride on Corrosion Behaviour of Fe–Cr Alloys in Wet CO2 Gas at 650°C. Oxidation of Metals, 2020, 94, 51-80.	2.1	14
13	Effects of Fe on Oxidation of Ni-20Cr and Ni-30Cr Alloys at 800°C in Wet CO2 Gas. Oxidation of Metals, 2020, 94, 219-233.	2.1	4
14	Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2-20H2O gas at 700â€ [−] °C. Corrosion Science, 2020, 170, 108702.	6.6	8
15	Oxidation behavior of Ni-Al coating with and without a Ni-Re diffusion barrier in dry CO2 gas at 650 ºC. Corrosion Science, 2019, 149, 236-243.	6.6	9
16	Effect of Fe on corrosion of Ni-20Cr and Ni-30Cr alloys in wet CO2 gas at 650 and 700 °C. Corrosion Science, 2019, 154, 129-143.	6.6	23
17	The CU PAO: A Minimally Invasive, 2-Incision, Interlocking Periacetabular Osteotomy. Journal of Bone and Joint Surgery - Series A, 2019, 101, 1495-1504.	3.0	18
18	Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800 °C. Corrosion Science, 2019, 146, 28-43.	6.6	32

#	Article	IF	CITATIONS
19	Growth of Cr2O3 blades during alloy scaling in wet CO2 gas. Corrosion Science, 2018, 133, 432-442.	6.6	20
20	Corrosion Behaviour of Fe–Cr–(Mn, Si) Ferritic Alloys in Wet and Dry CO2–SO2 Atmospheres at 650°C. Oxidation of Metals, 2018, 90, 97-118.	2.1	14
21	Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas. Corrosion Science, 2018, 132, 125-135.	6.6	42
22	Resistance of High-Nickel, Heat-Resisting Alloys to Air and to Supercritical CO2 at High Temperatures. Oxidation of Metals, 2018, 90, 1-25.	2.1	30
23	Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650†°C. Corrosion Science, 2018, 136, 311-325.	6.6	23
24	Effects of Si, Mn, and water vapour on the microstructure of protective scales grown on Fe–20Cr in CO ₂ gas. Materials at High Temperatures, 2018, 35, 22-29.	1.0	8
25	Oxygen solubility in austenitic Fe-Ni alloys at high temperatures. Journal of Alloys and Compounds, 2018, 732, 646-654.	5.5	15
26	Effect of Sulphur on the Oxidation Behaviour of Possible Construction Materials for Heat Exchangers in Oxyfuel Plants in the Temperature Range 550–700°C. Oxidation of Metals, 2018, 89, 651-681.	2.1	21
27	Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2 at 700 °C. Corrosion Science, 2018, 130, 161-176.	6.6	27
28	Alloy Corrosion by Hot CO2 Gases. Jom, 2018, 70, 1493-1501.	1.9	25
29	Performance of an FeCrAl alloy in a high-temperature CO2 environment. Corrosion Science, 2018, 139, 267-274.	6.6	18
30	(Invited) High Temperature Corrosion of Chromia-Forming Alloys By CO2: Effects of H2o and so2. ECS Meeting Abstracts, 2018, , .	0.0	0
31	Oxygen permeability of Feâ€Niâ€Cr alloys at 1100 and 1150 °C under carbonâ€free and carbonâ€containin Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 197-204.	g gases.	11
32	Effect of alloy composition on the oxidationâ€induced boron depletion in cast Niâ€base superalloy components. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 171-185.	1.5	15
33	Internal Oxidation in Dry and Wet Conditions for Oxygen Permeability of Fe–Ni Alloys at 1150 and 1100°C. Oxidation of Metals, 2017, 87, 273-283.	2.1	13
34	Oxidation Behavior of Ni–Cr Alloys in CO2 at 700°C. Oxidation of Metals, 2017, 87, 605-616.	2.1	20
35	Impact of the clusterization on the solubility of oxygen and vacancy concentration in nickel: A multi-scale approach. Journal of Alloys and Compounds, 2017, 708, 1063-1072.	5.5	12
36	On the breakaway oxidation of Fe9Cr1Mo steel in high pressure CO2. Acta Materialia, 2017, 130, 361-374.	7.9	53

#	Article	IF	CITATIONS
37	Corrosion resistance of chromised and aluminised coatings in wet CO 2 gas at 650 °C. Surface and Coatings Technology, 2017, 316, 226-238.	4.8	18
38	Effects of Silicon and Water Vapour on Corrosion of Fe–20Cr and Fe–20Cr–20Ni Alloys in CO2 at 650°C. Oxidation of Metals, 2017, 87, 541-573.	2.1	49
39	Effect of Temperature on Oxidation Behaviour of Ni-Cr Alloys in CO2Atmosphere. ECS Transactions, 2017, 75, 19-35.	0.5	5
40	Temperature Effect on Oxidation Behavior of Ni-Cr Alloys in CO ₂ Gas Atmosphere. Journal of the Electrochemical Society, 2017, 164, C285-C293.	2.9	35
41	Mixed Gas Corrosion of Pure Metals. , 2016, , 145-191.		2
42	Corrosion by Sulphur. , 2016, , 393-430.		4
43	Enabling Theory. , 2016, , 31-84.		6
44	Corrosion by Carbon. , 2016, , 431-493.		0
45	Alloy Oxidation III. , 2016, , 335-392.		6
46	Oxidation of Alloys I. , 2016, , 193-260.		7
47	Alloy Oxidation II. , 2016, , 261-333.		6
48	The Nature of High Temperature Oxidation. , 2016, , 1-30.		55
49	Oxidation of Pure Metals. , 2016, , 85-144.		4
50	Corrosion by Carbon Dioxide. , 2016, , 495-547.		3
51	Effects of Water Vapour onÂOxidation. , 2016, , 549-601.		10
52	Cyclic Oxidation. , 2016, , 647-683.		1
53	Alloy Design. , 2016, , 685-701.		0
54	Effect of Mn on oxide formation by Fe-Cr and Fe-Cr-Ni alloys in dry and wet CO 2 gases at 650 ŰC. Corrosion Science, 2016, 112, 110-127.	6.6	58

#	Article	IF	CITATIONS
55	High temperature corrosion of Fe-Cr-(Mn/Si) alloys in CO 2 -H 2 O-SO 2 gases. Corrosion Science, 2016, 112, 214-225.	6.6	33
56	Corrosion in Complex Environments. , 2016, , 603-645.		0
57	Sulfur Effect on Corrosion Behavior of Fe-20Cr-(Mn, Si) and Fe-20Ni-20Cr-(Mn, Si) in CO2-H2O at 650°C. Journal of the Electrochemical Society, 2016, 163, C106-C115.	2.9	17
58	Water Vapor Effects on Corrosion of Fe–Cr and Fe–Cr–Ni Alloys Containing Silicon in CO2 Gas at 818°C. Oxidation of Metals, 2015, 83, 575-594.	2.1	30
59	Corrosion of Fe–9Cr–(Mn, Si) alloys in CO2–H2O–SO2 gases. Corrosion Science, 2015, 98, 516-529.	6.6	36
60	Microstructures of chromia scales grown in CO ₂ . Materials at High Temperatures, 2015, 32, 16-21.	1.0	26
61	Oxygen Permeability Measurements in Ni Using H2/H2O, CO/CO2 and Ni/NiO Rhines Pack Atmospheres. Oxidation of Metals, 2015, 83, 223-235.	2.1	24
62	Boron Depletion in a Nickel Base Superalloy Induced by High Temperature Oxidation. Oxidation of Metals, 2015, 83, 393-413.	2.1	27
63	Effects of cerium and manganese on corrosion of Fe–Cr and Fe–Cr–Ni alloys in Ar–20CO2 and Ar–20CO2–20H2O gases at 650 °C. Corrosion Science, 2015, 100, 448-465.	6.6	47
64	Interpreting atom probe data from chromium oxide scales. Ultramicroscopy, 2015, 159, 354-359.	1.9	29
65	Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at High Temperature. Oxidation of Metals, 2015, 84, 585-606.	2.1	62
66	Effects of water vapour on the high temperature nitridation of chromium. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 260-266.	1.5	21
67	Effects of Silicon on High Temperature Corrosion of Fe–Cr and Fe–Cr–Ni Alloys in Carbon Dioxide. Oxidation of Metals, 2014, 81, 549-574.	2.1	85
68	Water vapour effects on corrosion of Fe–Cr and Fe–Cr–Ni alloys containing cerium and manganese in CO2 gas at 818 °C. Corrosion Science, 2014, 89, 220-235.	6.6	49
69	Mechanisms of Oxide Scale Formation on Ferritic Interconnect Steel in Simulated Low and High pO2 Service Environments of Solid Oxide Fuel Cells. Oxidation of Metals, 2014, 82, 123-143.	2.1	43
70	Non-steady state carburisation of martensitic 9–12%Cr steels in CO2 rich gases at 550°C. Corrosion Science, 2014, 88, 161-169.	6.6	61
71	Penetration of protective chromia scales by carbon. Scripta Materialia, 2014, 77, 29-32.	5.2	113
72	Water Vapour Effects on FeO Scale Growth: Differences Between Iron and Steel. Oxidation of Metals, 2013, 79, 445-460.	2.1	16

#	Article	IF	CITATIONS
73	Slow Transition from Protective to Breakaway Oxidation of Haynes 214 Foil at High Temperature. Oxidation of Metals, 2013, 79, 405-427.	2.1	26
74	Nano-crystalline coating to improve cyclic oxidation resistance of 304 stainless steel. Surface and Coatings Technology, 2013, 217, 162-171.	4.8	18
75	Kinetics of breakaway oxidation of Fe–Cr and Fe–Cr–Ni alloys in dry and wet carbon dioxide. Corrosion Science, 2013, 77, 246-256.	6.6	57
76	Effects of cerium and manganese on corrosion of Fe–Cr and Fe–Cr–Ni alloys in Ar–20CO2 gas at 818°C. Corrosion Science, 2013, 76, 231-242.	6.6	60
77	Oxidation and carburisation of Fe–6Al/Fe–6Al–3Si in dry and wet CO2 gases. Corrosion Science, 2013, 74, 256-264.	6.6	7
78	Martensite formation in Fe–9Cr alloys exposed to low carbon activity gas. Scripta Materialia, 2013, 69, 9-12.	5.2	16
79	Effect of Copper on the Dusting of Fe-Ni Alloys. ECS Transactions, 2012, 41, 37-46.	0.5	1
80	Active Oxidation of Liquid Silicon: Experimental Investigation of Kinetics. Oxidation of Metals, 2012, 78, 363-376.	2.1	16
81	Oxidation of Fe–Si, Fe–Al and Fe–Si–Al alloys in CO2–H2O gas at 800°C. Corrosion Science, 2012, 54 127-138.	^{1,} 6.6	31
82	Contributions of carbon permeation and graphite nucleation to the austenite dusting reaction: A study of model Fe–Ni–Cu alloys. Corrosion Science, 2012, 56, 184-193.	6.6	11
83	Mechanism of breakaway oxidation of Fe–Cr and Fe–Cr–Ni alloys in dry and wet carbon dioxide. Corrosion Science, 2012, 64, 222-222.	6.6	20
84	Metal Dusting: Catastrophic Corrosion by Carbon. Jom, 2012, 64, 1461-1469.	1.9	16
85	Effects of water vapour and oxygen partial pressures on low carbon steel oxidation in N2 -H2 -H2 O mixtures. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 869-877.	1.5	9
86	Metal Dusting of Alumina-Forming Creep-Resistant Austenitic Stainless Steels. Oxidation of Metals, 2012, 77, 167-187.	2.1	12
87	A Simple Expression for Predicting the Oxidation Limited Life of Thin Components Manufactured from FCC High Temperature Alloys. Oxidation of Metals, 2012, 77, 253-264.	2.1	29
88	Temperature Effects on the Oxidation of Low Carbon Steel in N2–H2–H2O at 800–1200°C. Oxidation o Metals, 2012, 77, 305-323.	f _{2.1}	12
89	Temperature dependence of oxide scale formation on high-Cr ferritic steels in Ar–H2–H2O. Corrosion Science, 2011, 53, 2131-2141.	6.6	90
90	Carburisation of ferritic Fe–Cr alloys by low carbon activity gases. Corrosion Science, 2011, 53, 2767-2777.	6.6	139

#	Article	IF	CITATIONS
91	Influence of Hafnium Additions and Preoxidation Treatment on the Metal Dusting of Ni–Al Alloys. Oxidation of Metals, 2011, 76, 287-305.	2.1	7
92	Effect of Zr Additions on the Oxidation Kinetics of FeCrAlY Alloys in Low and High pO2 Gases. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1173-1183.	2.2	19
93	Recent advances in understanding metal dusting: A review. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 7-28.	1.5	116
94	Metal dusting behaviour of several nickel―and cobaltâ€base alloys in COH ₂ H ₂ O atmosphere. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 521-530.	1.5	6
95	Effect of water vapour on cyclic oxidation of Fe–Cr alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 496-503.	1.5	12
96	Oxidation of Fe–Si alloys in CO ₂ –H ₂ O atmospheres. Materials at High Temperatures, 2011, 28, 297-301.	1.0	7
97	Metal Dusting of Nickel–Aluminium Alloys. Oxidation of Metals, 2010, 73, 255-274.	2.1	8
98	Water Vapour Effects on Fe–Cr Alloy Oxidation. Oxidation of Metals, 2010, 73, 337-352.	2.1	72
99	Oxidation kinetics of Yâ€doped FeCrAlâ€alloys in low and high pO ₂ gases. Materials and Corrosion - Werkstoffe Und Korrosion, 2010, 61, 838-844.	1.5	55
100	Oxidation resistance of Pt-modified γ/γ′ Ni-Al at 1150°C. Surface and Coatings Technology, 2010, 204, 2051-2054.	4.8	11
101	High Temperature Corrosion of Fe-Cr, Fe-Al, Fe-Si and Fe-Si-Al Alloys in CO ₂ -H ₂ O Gases. Materials Science Forum, 2010, 654-656, 1948-1951.	0.3	3
102	Simultaneous Corrosion of Fe–Si Alloys by Carbon and Oxygen. Journal of the Electrochemical Society, 2010, 157, C375.	2.9	10
103	Carburization and Metal Dusting. , 2010, , 272-303.		6
104	Subsurface microstructural changes in a cast heat resisting alloy caused by high temperature corrosion. Corrosion Science, 2010, 52, 255-262.	6.6	28
105	Temperature and water vapour effects on the cyclic oxidation behaviour of Fe–Cr alloys. Corrosion Science, 2010, 52, 2827-2836.	6.6	48
106	Internal oxidation and metal dusting of Fe–Si alloys. Corrosion Science, 2010, 52, 3280-3286.	6.6	18
107	Simultaneous Oxidation and Metal Dusting of Fe-Si Alloys. ECS Transactions, 2009, 25, 57-69.	0.5	2
108	Surface orientation effects on initial carbon deposition and metal dusting of nickel. Materials at High Temperatures, 2009, 26, 45-55.	1.0	7

#	Article	IF	CITATIONS
109	Understanding Metal Dusting Mechanisms. ECS Transactions, 2009, 16, 3-15.	0.5	10
110	Effect of gas composition on coking and metal dusting of 2.25Cr–1Mo steel compared with iron. Corrosion Science, 2009, 51, 2983-2993.	6.6	12
111	Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres. Corrosion Science, 2009, 51, 3039-3049.	6.6	90
112	Carbon Permeability of Nickel and Ni–Cu Alloys. Oxidation of Metals, 2008, 70, 15-24.	2.1	12
113	Coking and Dusting of Fe–Ni Alloys in CO–H2–H2O Gas Mixtures. Oxidation of Metals, 2008, 70, 189-211.	2.1	24
114	Effectiveness of platinum and iridium in improving the resistance of Niâ€Al to thermal cycling in air–steam mixtures. Materials and Corrosion - Werkstoffe Und Korrosion, 2008, 59, 455-462.	1.5	15
115	Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 477, 259-270.	5.6	170
116	Microprocesses in nickel accompanying metal dusting. Acta Materialia, 2008, 56, 68-77.	7.9	42
117	High temperature corrosion of cast heat resisting steels in CO+CO2 gas mixtures. Corrosion Science, 2008, 50, 2398-2406.	6.6	31
118	Oxidation, carburisation and metal dusting of 304 stainless steel in CO/CO2 and CO/H2/H2O gas mixtures. Corrosion Science, 2008, 50, 3107-3115.	6.6	33
119	Carburisation and metal dusting in hydrogen rich gas. Materials at High Temperatures, 2007, 24, 225-232.	1.0	7
120	Effect of copper on metal dusting of austenitic stainless steels. Corrosion Science, 2007, 49, 1450-1467.	6.6	41
121	Kinetics and mechanisms of nickel metal dusting I. Kinetics and morphology. Corrosion Science, 2007, 49, 1496-1512.	6.6	50
122	Simultaneous oxidation and carburisation of chromia forming alloys. International Journal of Hydrogen Energy, 2007, 32, 3763-3769.	7.1	36
123	Protective nitride formation on stainless steel alloys for proton exchange membrane fuel cell bipolar plates. Journal of Power Sources, 2007, 174, 228-236.	7.8	45
124	Metal dusting of ferritic Fe–Ge in the absence of cementite. Scripta Materialia, 2007, 56, 281-284.	5.2	12
125	Continuous thermogravimetric analysis during the cyclic oxidation of Ni–22Al–15Pt+1wt.% Hf at 1200°C. Scripta Materialia, 2007, 57, 647-650.	5.2	5
126	Carburization resistance of nickel-base, heat-resisting alloys. Oxidation of Metals, 2007, 67, 267-277.	2.1	22

#	Article	IF	CITATIONS
127	Stability of Cementite Formed from Hematite and Titanomagnetite Ore. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2007, 38, 175-184.	2.1	33
128	Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments. Corrosion Science, 2006, 48, 3428-3454.	6.6	270
129	Chromium Volatilization Rates from Cr2O3 Scales into Flowing Gases Containing Water Vapor. Oxidation of Metals, 2006, 66, 137-153.	2.1	226
130	Effect of carbide volume fraction on the oxidation of austenitic Fe-Cr-C alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2006, 57, 467-475.	1.5	9
131	Metal Dusting Reaction Mechanisms. Materials Science Forum, 2006, 522-523, 15-26.	0.3	13
132	Metal Dusting of Nickel and its Alloys. ECS Transactions, 2006, 3, 27-41.	0.5	7
133	α-NiPt(Al) and phase equilibria in the Ni–Al–Pt system at 1150 °C. Acta Materialia, 2005, 53, 3319-3328.	7.9	99
134	Alloying with copper to reduce metal dusting of nickel. Materials and Corrosion - Werkstoffe Und Korrosion, 2005, 56, 756-764.	1.5	34
135	Development of Re-based diffusion barrier coatings on nickel based superalloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2005, 56, 923-929.	1.5	50
136	Scaling of Carbon Steel in Simulated Reheat Furnace Atmospheres. Oxidation of Metals, 2005, 63, 15-31.	2.1	24
137	Selective Oxidation and Sub-surface Phase Transformations in Chromium-bearing Austenitic Steels. Oxidation of Metals, 2005, 63, 277-304.	2.1	5
138	Cyclic Oxidation of Heat Resisting Steels. Oxidation of Metals, 2005, 64, 281-301.	2.1	8
139	Microstructural characterization of a carbonitrided heat resisting alloy using focused ion beam-based techniques. Materials at High Temperatures, 2005, 22, 351-358.	1.0	6
140	Oxidation - Nitridation of Ni-Cr-Al alloys. Materials Research, 2004, 7, 11-16.	1.3	22
141	Internal Precipitation of Al ₂ O ₃ and Cr ₂ O ₃ in Austenitic Alloys. Materials Science Forum, 2004, 461-464, 21-28.	0.3	8
142	Role of Water Vapor in Chromia-Scale Growth at Low Oxygen Partial Pressure. Oxidation of Metals, 2003, 59, 285-301.	2.1	122
143	Amounts and Distribution of Phases in Sulfide Plus Oxide Scales on Iron. Oxidation of Metals, 2003, 60, 447-465.	2.1	4
144	Internal oxidation and carburisation of heat-resistant alloys. Corrosion Science, 2003, 45, 967-981.	6.6	79

#	Article	IF	CITATIONS
145	High temperature carbon corrosion in solid oxide fuel cells. Materials at High Temperatures, 2003, 20, 129-136.	1.0	19
146	Alloy phase transformations driven by high temperature corrosion processes. Corrosion Science, 2002, 44, 345-357.	6.6	65
147	Microstructure of HK40 alloy after high temperature service in oxidizing/carburizing environment. Materials Characterization, 2002, 49, 11-21.	4.4	76
148	Metal Dusting of Fe–Cr and Fe–Ni–Cr Alloys Under Cyclic Conditions. Oxidation of Metals, 2002, 58, 1-21.	2.1	62
149	Microstructural analysis of carbonitrided austenitic steels. Micron, 2001, 32, 817-824.	2.2	7
150	Simultaneous Internal Oxidation and Nitridation of Ni–Cr–Al Alloys. Oxidation of Metals, 2001, 55, 223-242.	2.1	52
151	Rapid Growth of SiO2 Nanofibers on Silicon-Bearing Alloys. Oxidation of Metals, 2001, 56, 375-394.	2.1	22
152	Kinetic and Morphological Development of Internal Precipitates in Iron-Chromium Alloys. Materials Science Forum, 2001, 369-372, 93-100.	0.3	14
153	The Corrosion Behavior of Sulfidation-Resistant Fe–Mo–Al Alloys in H2/H2S Atmospheres at 900°C. Oxidation of Metals, 2000, 54, 103-120.	2.1	4
154	Reoxidation of hot briquetted iron in salt water. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000, 31, 1133-1135.	2.1	1
155	Internal oxidation processes under non-ideal conditions ^{â€} . Materials at High Temperatures, 2000, 17, 465-470.	1.0	5
156	Precipitate morphologies and growth kinetics in the internal carburisation and nitridation of Fe–Ni–Cr alloys. Corrosion Science, 2000, 42, 861-883.	6.6	32
157	Formation of Z-Ti50Al30O20 in the sub-oxide zones of γ-TiAl-based alloys during oxidation at 1000°C. Acta Materialia, 1999, 47, 2937-2949.	7.9	92
158	Kinetic and morphological development of coke formation on heat-resistant alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 1999, 50, 675-680.	1.5	5
159	Factors Affecting Chromium Carbide Precipitate Dissolution During Alloy Oxidation. Oxidation of Metals, 1998, 50, 139-165.	2.1	78
160	Caburisation of heat-resistant steels. Materials and Corrosion - Werkstoffe Und Korrosion, 1998, 49, 231-236.	1.5	30
161	Silicon contamination effects in the oxidation of carbide-containing cobalt-chromium alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 1998, 49, 855-863.	1.5	22
162	Influence of yttrium on the high temperature corrosion of chromium and Fe-28Cr in CO-CO2-N2(-SO2) atmospheres. Corrosion Science, 1998, 40, 741-756.	6.6	7

#	Article	IF	CITATIONS
163	Laser Raman spectroscopy: a technique for rapid characterisation of oxide scale layers. Materials Science and Technology, 1998, 14, 373-376.	1.6	48
164	High Temperature Reaction of Chromium with Multi-Oxidant Atmospheres. Materials Science Forum, 1997, 251-254, 567-574.	0.3	24
165	The cyclic oxidation behaviour of α-Cr + β-NiAl alloys with and without trace Zr addition. Corrosion Science, 1997, 39, 639-654.	6.6	45
166	Effect of nanocrystallization on the corrosion resistance of K38G superalloy in CO + CO2 atmospheres. Oxidation of Metals, 1997, 48, 497-509.	2.1	18
167	Mechanisms of the simultaneous sulfidation and oxidation of Feî—,Mn alloys. Corrosion Science, 1996, 38, 247-266.	6.6	8
168	Sulphide formation after pre-oxidation of chromia formers. Corrosion Science, 1996, 38, 1877-1897.	6.6	19
169	Calculation of precipitate dissolution zone kinetics in oxidising binary two-phase alloys. Acta Materialia, 1996, 44, 4033-4038.	7.9	29
170	Cyclic Oxidation Plus Carburization of Heat-Resistant Alloys. Corrosion, 1995, 51, 191-200.	1.1	9
171	High-temperature corrosion in mixed gas environments. Oxidation of Metals, 1995, 44, 239-264.	2.1	73
172	Comparison of internal nitridation reactions in ammonia and in nitrogen. Oxidation of Metals, 1995, 44, 453-474.	2.1	35
173	A new Ti-rich ternary phase in the Ti-Al-O system. Materials Letters, 1995, 22, 125-129.	2.6	14
174	A kinetic and morphological study of the coking of some heat-resistant steels. Journal of Materials Science, 1994, 29, 4357-4370.	3.7	8
175	High-temperature corrosion of Cr2O3-forming alloys in CO-CO2-N2 atmospheres. Oxidation of Metals, 1994, 42, 163-190.	2.1	92
176	High temperature corrosion of pure chromium in CO-CO2-SO2-N2 atmospheres. Corrosion Science, 1994, 36, 1999-2015.	6.6	26
177	The effects of manganese additions on the sulfidation behavior of an Fe-28Mo alloy. Corrosion Science, 1994, 36, 401-414.	6.6	7
178	Codeposited Chromiumâ€Aluminide Coatings: I . Definition of the Codeposition Regimes. Journal of the Electrochemical Society, 1994, 141, 1464-1471.	2.9	34
179	Codeposited Chromiumâ€Aluminide Coatings: II . Kinetics and Morphology of Coating Growth. Journal of the Electrochemical Society, 1994, 141, 2690-2698.	2.9	35
180	Effects of yttrium and zirconium additions on the high-temperature sulfidation behavior of an Feâ^'10Moâ^'20Alâ^'8Mn alloy. Oxidation of Metals, 1994, 42, 485-509.	2.1	1

#	Article	IF	CITATIONS
181	Improvements to Raney copper methanol synthesis catalysts through zinc impregnation. Applied Catalysis A: General, 1993, 95, 65-74.	4.3	12
182	The effect of molybdenum and aluminium additions on the carburization behaviour of high temperature steel. Journal of Materials Science Letters, 1993, 12, 1076-1079.	0.5	20
183	Sulfidation behavior of Fe-27Mn-(0-17.3)Mo(a/o) alloys. Oxidation of Metals, 1993, 40, 245-274.	2.1	6
184	High-temperature-sulfidation behavior of Fe-Mo-Mn-Al alloys. Oxidation of Metals, 1993, 40, 433-460.	2.1	7
185	Cyclic oxidation behaviour of two-phase Niî—,Crî—,Al alloys at 1100°C. Corrosion Science, 1993, 35, 923-929.	6.6	30
186	The transition from single to double oxide growth during the high temperature corrosion of a pure metal by a single oxidant. Oxidation of Metals, 1992, 38, 309-322.	2.1	5
187	Kinetic and morphological development of oxide-sulfide scales on iron at 1073 K. Oxidation of Metals, 1992, 37, 281-300.	2.1	11
188	Kinetic and morphological development of oxide?sulfide scales on manganese at 1073 K. Oxidation of Metals, 1992, 37, 301-325.	2.1	12
189	The hot-corrosion behavior of novel CO-deposited chromium-modified aluminide coatings. Oxidation of Metals, 1992, 38, 407-424.	2.1	48
190	Surface Effects in Sulfidation Reactions. Canadian Metallurgical Quarterly, 1991, 30, 227-233.	1.2	5
191	Improvements to Raney copper methanol synthesis catalysts through zinc impregnation. Applied Catalysis, 1991, 77, 75-88.	0.8	23
192	Improvements to raney copper methanol synthesis catalysts through zinc impregnation. Applied Catalysis, 1991, 77, 89-94.	0.8	17
193	Hydrogen doping effects in the sulfidation of molybdenum. Oxidation of Metals, 1991, 36, 15-25.	2.1	11
194	The oxidation of Iron-Chromium-Manganese alloys at 900�C. Oxidation of Metals, 1991, 36, 157-174.	2.1	125
195	High-temperature sulfidation of Fe-Mn-Cr alloys. Oxidation of Metals, 1991, 36, 409-421.	2.1	4
196	Ageing of dealloyed copper. Journal of Materials Science, 1990, 25, 4106-4112.	3.7	15
197	Sulfidation behavior of a binary Fe-Mn alloy. Oxidation of Metals, 1990, 34, 161-172.	2.1	10
198	Sulfidation Behavior of an Ironâ€Nickel Alloy. Journal of the Electrochemical Society, 1989, 136, 545-550.	2.9	15

#	Article	IF	CITATIONS
199	Effect of the deviation from stoichiometry on the activity of pure oxides and of oxide solid solutions. Journal of Physics and Chemistry of Solids, 1989, 50, 415-421.	4.0	1
200	Morphological evolution during sulfidation of an iron-nickel alloy. Oxidation of Metals, 1989, 31, 105-121.	2.1	7
201	Selective leaching of NiAl3 and Ni2Al3 intermetallics to form Raney nickels. Journal of Materials Science, 1988, 23, 3921-3926.	3.7	53
202	Thermodynamics of ionic diffusion and oxidation rate equations. Oxidation of Metals, 1988, 29, 169-185.	2.1	6
203	Parabolic growth of solid-solution scales: Effect of deviations from stoichiometry. Oxidation of Metals, 1988, 30, 391-403.	2.1	1
204	The Precipitation and Dissolution of Zinc during Leaching of Cuâ€Alâ€Zn Alloys in Alkali Solutions. Journal of the Electrochemical Society, 1988, 135, 1902-1907.	2.9	11
205	Improvements to Raney Copper Methanol Synthesis Catalysts Through Zinc Impregnation. III. Activity Testing. Studies in Surface Science and Catalysis, 1988, 36, 239-243.	1.5	3
206	Cellular morphologies in a de-alloying residue. Philosophical Magazine Letters, 1987, 55, 109-114.	1.2	19
207	Structural changes during the leaching of copper-based raney catalysts. Applied Catalysis, 1987, 33, 119-127.	0.8	20
208	Preparation and properties of raney copper-zinc catalyst pellets for methanol synthesis. Applied Catalysis, 1987, 29, 31-41.	0.8	28
209	Modelling the development of pore structure during the preparation of raney copper catalysts for fixed bed operation. Applied Catalysis, 1987, 35, 321-328.	0.8	6
210	Silicide coatings for carburization protection. Materials Science and Engineering, 1987, 88, 81-87.	0.1	13
211	Morphological development of oxide-sulfide scales on iron and iron-manganese alloys. Oxidation of Metals, 1987, 28, 165-181.	2.1	8
212	Diffusion profiles associated with the onsager matrix in non-equilibrium A-Aâ [^] —-vacancy and A-B-vacancy solutions. Acta Metallurgica, 1987, 35, 1273-1279.	2.1	5
213	A comparison of Raney copper-zinc and coprecipitated copper-zinc-aluminium oxide methanol syntheses catalysts. Applied Catalysis, 1986, 28, 241-253.	0.8	32
214	The coking kinetics of heat resistant austenitic steels in hydrogen-propylene atmospheres. Journal of Materials Science, 1986, 21, 3125-3134.	3.7	23
215	Sulfidation behavior of an aluminum-manganese steel. Oxidation of Metals, 1986, 25, 107-119.	2.1	20
216	Effect of scale constitution on the carburization of heat resistant steels. Oxidation of Metals, 1986, 26, 417-430.	2.1	13

#	Article	IF	CITATIONS
217	Coke deposition on and removal from metals and heat-resistant alloys under steam-cracking conditions. Journal of Materials Science, 1986, 21, 4376-4384.	3.7	16
218	Gasâ€Phase Composition Effects on the Iron Sulfide Scaling Reaction. Journal of the Electrochemical Society, 1986, 133, 1734-1741.	2.9	28
219	Morphological studies of coking on heat-resistant alloys. Journal of Materials Science, 1985, 20, 4035-4044.	3.7	15
220	Preparation and properties of raney copper foraminate catalysts. Journal of Catalysis, 1985, 91, 25-35.	6.2	13
221	Pore Development during Selective Leaching. Journal of the Electrochemical Society, 1984, 131, 2476-2481.	2.9	27
222	OPTIMISATION OF THE PREPARATION OF RANEY COPPER-ZINC CATALYSTS FOR METHANOL SYNTHESIS. Chemical Engineering Communications, 1984, 26, 163-171.	2.6	7
223	Isothermal diffusion in multicomponent ionic solids. Journal of Physics and Chemistry of Solids, 1984, 45, 781-788.	4.0	8
224	Effects of aluminum on the oxidation of 25Cr-35Ni cast steels. Oxidation of Metals, 1984, 22, 227-245.	2.1	31
225	Sulfidation behavior of austeno-ferritic steels. Oxidation of Metals, 1984, 21, 103-118.	2.1	7
226	Pore structure of raney copper according to adsorption and mercury porosimetry. Applied Catalysis, 1984, 12, 43-48.	0.8	15
227	Preparation and properties of raney nickel-cobalt catalysts. Journal of Catalysis, 1983, 84, 189-199.	6.2	18
228	Methanol synthesis over Raney copper-zinc catalysts I. Activities and surface properties of fully extracted catalysts. Journal of Catalysis, 1983, 80, 1-13.	6.2	87
229	Methanol synthesis over Raney copper-zinc catalysts II. Activities and surface properties of a partially leached alloy. Journal of Catalysis, 1983, 80, 14-24.	6.2	53
230	Methanol synthesis over raney copper-zinc catalysts. III. optimization of alloy composition and catalyst preparation. Applied Catalysis, 1983, 7, 369-382.	0.8	36
231	On the determination of copper surface area by reaction with nitrous oxide. Applied Catalysis, 1983, 7, 75-83.	0.8	390
232	DEVELOPMENT OF RANEY-TYPE LOW TEMPERATURE METHANOL SYNTHESIS CATALYSTSâ€. Chemical Engineering Communications, 1982, 14, 279-288.	2.6	13
233	Carburization kinetics of heat-resistant steels. Oxidation of Metals, 1982, 18, 229-243.	2.1	56
234	Caustic Leaching of Alâ€Cuâ€Zn Alloys to Produce Raney Catalysts: I . Morphological Development. Journal of the Electrochemical Society, 1981, 128, 1840-1844.	2.9	25

#	Article	IF	CITATIONS
235	Caustic Leaching of Alâ€Cuâ€Zn Alloys to Produce Raney Catalysts: II . Leaching Kinetics. Journal of the Electrochemical Society, 1981, 128, 1845-1850.	2.9	30
236	Raney nickel-copper catalysts I. Structure and leaching properties. Journal of Catalysis, 1980, 64, 116-123.	6.2	31
237	Diffusional Analysis for Growth of the Monosulfide Scale on Cobaltâ€Iron Alloys. Journal of the Electrochemical Society, 1980, 127, 679-686.	2.9	12
238	Deactivation Due to Metal-Catalysed Phase Transformations in Ĵ-Al2O3 Supports. Studies in Surface Science and Catalysis, 1980, 6, 331-340.	1.5	20
239	Uphill diffusion associated with a flux of extrinsic vacancies. Canadian Journal of Physics, 1979, 57, 722-727.	1.1	4
240	Low-temperature oxidation of Fe-24 wt.%Cr. Oxidation of Metals, 1979, 13, 437-456.	2.1	11
241	Pressure Effects in the Oxidation of Chromium. Journal of the Electrochemical Society, 1977, 124, 775-779.	2.9	16
242	Oxidation Behavior of Chromium Between 300° and 600°C. Journal of the Electrochemical Society, 1977, 124, 769-774.	2.9	52
243	Sulfidation Kinetics of Iron and Ferritic Ironâ€Cobalt Alloys. Journal of the Electrochemical Society, 1976, 123, 229-234.	2.9	20
244	Conduction Mechanisms in Alkali Metal Vapor Electrolysis Cells. Journal of the Electrochemical Society, 1976, 123, 1052-1056.	2.9	0
245	Discontinuous Precipitation as a Mode of Internal Oxidation. Journal of the Electrochemical Society, 1976, 123, 1758-1760.	2.9	15
246	The Criterion for Stability of a Planar Alloyâ€Oxide Interface upon Oxidation of Binary Alloys. Journal of the Electrochemical Society, 1976, 123, 1073-1079.	2.9	29
247	The effects of molybdenum additions to nickel-chromium alloys on their sulfidation properties. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1975, 6, 1205-1215.	1.4	9
248	The phototarnishing of silver and copper. Part II. Oxidation of Metals, 1975, 9, 117-126.	2.1	3
249	Diffusion in ionic solids. Scripta Metallurgica, 1975, 9, 159-163.	1.2	3
250	Oxidation properties of transition metals. Progress in Solid State Chemistry, 1975, 10, 17-54.	7.2	117
251	A technique for the vacuum deposition of alkali metals. Journal of Vacuum Science and Technology, 1974, 11, 1131-1132.	1.9	0
252	The Sulfidation Properties of Cobalt-Iron Alloys in Hydrogen Sulfide-Hydrogen Atmospheres at 700°C. Journal of the Electrochemical Society, 1974, 121, 889.	2.9	6

DAVID JOHN YOUNG

#	Article	IF	CITATIONS
253	Sulfidation properties of nickel-20 wt.% molybdenum alloy in hydrogen-hydrogen sulfide atmospheres at 700�C. Oxidation of Metals, 1973, 7, 149-161.	2.1	12
254	Kinetics of chlorination of metallic sodium at low temperatures. Oxidation of Metals, 1973, 7, 77-93.	2.1	1
255	Metal oxidation—l. Ionic transport equation. Journal of Physics and Chemistry of Solids, 1973, 34, 1227-1234.	4.0	25
256	Metal oxidation—II. Kinetics in the thin and very thin film regions under conditions of electron equilibrium. Journal of Physics and Chemistry of Solids, 1973, 34, 1235-1250.	4.0	24
257	Nonstoichiometry and Thermodynamics of Chromium Sulfides. Journal of the Electrochemical Society, 1973, 120, 1221.	2.9	67
258	?Logarithmic? kinetics in thin film tarnishing. Oxidation of Metals, 1972, 5, 241-249.	2.1	22
259	Phototarnishing of silver by alkyl iodides. Transactions of the Faraday Society, 1969, 65, 3355.	0.9	3
260	Effects of Water Vapour on the Oxidation of Chromia Formers. Materials Science Forum, 0, 595-598, 1189-1197.	0.3	47
261	Diffusion in Metal Dusting Processes. Defect and Diffusion Forum, 0, 289-292, 51-62.	0.4	8
262	Effects of Lanthanum on Fe-25Cr Alloys under Cyclic Oxidation. Advanced Materials Research, 0, 97-101, 1212-1215.	0.3	6
263	Predicting Internal Oxidation: Building on the Wagner Model. Materials Science Forum, 0, 696, 1-11.	0.3	16
264	Diffusion in Internal Oxidation Reactions. Defect and Diffusion Forum, 0, 323-325, 283-288.	0.4	3