
Jörg-Dieter Schulzke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2369397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterology, 2014, 14, 189.	0.8	1,187
2	Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands. Molecular Biology of the Cell, 2000, 11, 4131-4142.	0.9	1,005
3	Interleukin-13 Is the Key Effector Th2 Cytokine in Ulcerative Colitis That Affects Epithelial Tight Junctions, Apoptosis, and Cell Restitution. Gastroenterology, 2005, 129, 550-564.	0.6	951
4	Interleukin-13 Is the Key Effector Th2 Cytokine in Ulcerative Colitis That Affects Epithelial Tight Junctions, Apoptosis, and Cell Restitution. Gastroenterology, 2005, 129, 550-564.	0.6	806
5	Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. Journal of Cell Science, 2002, 115, 4969-4976.	1.2	700
6	Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology, 1999, 116, 301-309.	0.6	526
7	Claudin-2, a component of the tight junction, forms a paracellular water channel. Journal of Cell Science, 2010, 123, 1913-1921.	1.2	345
8	Epithelial Tight Junctions in Intestinal Inflammation. Annals of the New York Academy of Sciences, 2009, 1165, 294-300.	1.8	318
9	Tricellulin Forms a Barrier to Macromolecules in Tricellular Tight Junctions without Affecting Ion Permeability. Molecular Biology of the Cell, 2009, 20, 3713-3724.	0.9	288
10	Downregulation of epithelial apoptosis and barrier repair in active Crohn's disease by tumour necrosis factor antibody treatment. Gut, 2004, 53, 1295-1302.	6.1	261
11	Tight junction, selective permeability, and related diseases. Seminars in Cell and Developmental Biology, 2014, 36, 166-176.	2.3	245
12	Mechanisms of diarrhea in collagenous colitis. Gastroenterology, 2002, 123, 433-443.	0.6	238
13	Leaks in the epithelial barrier caused by spontaneous and TNFâ€î±â€induced singleâ€cell apoptosis. FASEB Journal, 2000, 14, 1749-1753.	0.2	228
14	Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. Journal of Physiology, 2012, 590, 1035-1044.	1.3	210
15	Monocyte and M1 Macrophage-induced Barrier Defect Contributes to Chronic Intestinal Inflammation in IBD. Inflammatory Bowel Diseases, 2015, 21, 1.	0.9	206
16	TNFα-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFκB signaling. Journal of Cell Science, 2010, 123, 4145-4155.	1.2	196
17	Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2048-2057.	1.4	193
18	Epithelial Tight Junction Structure in the Jejunum of Children with Acute and Treated Celiac Sprue. Pediatric Research, 1998, 43, 435-441.	1.1	167

JöRG-DIETER SCHULZKE

#	Article	IF	CITATIONS
19	Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell and Tissue Research, 2005, 321, 89-96.	1.5	160
20	Disrupted Barrier Function through Epithelial Cell Apoptosis. Annals of the New York Academy of Sciences, 2006, 1072, 288-299.	1.8	154
21	The specific fates of tight junction proteins in apoptotic epithelial cells. Journal of Cell Science, 2004, 117, 2097-2107.	1.2	152
22	Quercetin Enhances Epithelial Barrier Function and Increases Claudin-4 Expression in Caco-2 Cells3. Journal of Nutrition, 2008, 138, 1067-1073.	1.3	146
23	Epithelial Barriers in Intestinal Inflammation. Antioxidants and Redox Signaling, 2011, 15, 1255-1270.	2.5	145
24	TNFα up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell and Tissue Research, 2009, 336, 67-77.	1.5	135
25	Celiac Disease: Role of the Epithelial Barrier. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 150-162.	2.3	116
26	Cytokine-dependent transcriptional down-regulation of epithelial sodium channel in ulcerative colitis. Gastroenterology, 2004, 126, 1711-1720.	0.6	114
27	Regulation of mucosal structure and barrier function in rat colon exposed to tumor necrosis factor alpha and interferon gamma <i>in vitro</i> : A novel model for studying the pathomechanisms of inflammatory bowel disease cytokines. Scandinavian Journal of Gastroenterology, 2009, 44, 1226-1235.	0.6	109
28	TRPV4â€mediated regulation of epithelial permeability. FASEB Journal, 2006, 20, 1802-1812.	0.2	106
29	Claudin-17 forms tight junction channels with distinct anion selectivity. Cellular and Molecular Life Sciences, 2012, 69, 2765-2778.	2.4	103
30	Therapeutic Options to Modulate Barrier Defects in Inflammatory Bowel Disease. Digestive Diseases, 2009, 27, 450-454.	0.8	101
31	Functional crosstalk between Wnt signaling and Cdx-related transcriptional activation in the regulation of the claudin-2 promoter activity. Biochemical and Biophysical Research Communications, 2004, 314, 1001-1007.	1.0	100
32	Claudin-related intestinal diseases. Seminars in Cell and Developmental Biology, 2015, 42, 30-38.	2.3	92
33	Transforming Growth Factor-β, a Whey Protein Component, Strengthens the Intestinal Barrier by Upregulating Claudin-4 in HT-29/B6 Cells1,2. Journal of Nutrition, 2011, 141, 783-789.	1.3	90
34	Duodenal biopsies of HIV-infected patients with diarrhoea exhibit epithelial barrier defects but no active secretion. Aids, 1998, 12, 43-51.	1.0	87
35	Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochemical and Biophysical Research Communications, 2009, 378, 45-50.	1.0	87
36	Improved Cell Line IPEC-J2, Characterized as a Model for Porcine Jejunal Epithelium. PLoS ONE, 2013, 8, e79643.	1.1	83

JöRG-DIETER SCHULZKE

#	Article	IF	CITATIONS
37	Epithelial Barrier Defects in HTâ€29/B6 Colonic Cell Monolayers Induced by Tumor Necrosis Factorâ€î±. Annals of the New York Academy of Sciences, 2000, 915, 193-203.	1.8	77
38	lon transport in the experimental short bowel syndrome of the rat. Gastroenterology, 1992, 102, 497-504.	0.6	73
39	Oral and Fecal Campylobacter concisus Strains Perturb Barrier Function by Apoptosis Induction in HT-29/B6 Intestinal Epithelial Cells. PLoS ONE, 2011, 6, e23858.	1.1	70
40	The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signaling. Molecular Nutrition and Food Research, 2016, 60, 2576-2586.	1.5	70
41	Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Archiv European Journal of Physiology, 2017, 469, 15-26.	1.3	69
42	Altered ENaC Expression Leads to Impaired Sodium Absorption in the Noninflamed Intestine in Crohn's Disease. Gastroenterology, 2008, 134, 1436-1447.	0.6	66
43	<i>Arcobacter butzleri</i> Induces Barrier Dysfunction in Intestinal HTâ€29/B6 Cells. Journal of Infectious Diseases, 2009, 200, 756-764.	1.9	63
44	Aerolysin From Aeromonas hydrophila Perturbs Tight Junction Integrity and Cell Lesion Repair in Intestinal Epithelial HT-29/B6 Cells. Journal of Infectious Diseases, 2011, 204, 1283-1292.	1.9	63
45	Campylobacter jejuni enters gut epithelial cells and impairs intestinal barrier function through cleavage of occludin by serine protease HtrA. Gut Pathogens, 2019, 11, 4.	1.6	61
46	α-Haemolysin of <i>Escherichia coli</i> in IBD: a potentiator of inflammatory activity in the colon. Gut, 2014, 63, 1893-1901.	6.1	60
47	Lactoferrin protects against intestinal inflammation and bacteriaâ€induced barrier dysfunction <i>in vitro</i> . Annals of the New York Academy of Sciences, 2017, 1405, 177-188.	1.8	60
48	Supernatants of HIV-infected immune cells affect the barrier function of human HT-29/B6 intestinal epithelial cells. Aids, 2002, 16, 983-991.	1.0	57
49	Long-term response to gluten-free diet as evidence for non-celiac wheat sensitivity in one third of patients with diarrhea-dominant and mixed-type irritable bowel syndrome. International Journal of Colorectal Disease, 2017, 32, 29-39.	1.0	57
50	Ussing chamber for high-frequency transmural impedance analysis of epithelial tissues. Journal of Proteomics, 1997, 35, 81-88.	2.4	54
51	IL-1β and TNFα regulate sodium absorption in rat distal colon. Biochemical and Biophysical Research Communications, 2004, 317, 500-507.	1.0	54
52	Escherichia�coli ?-haemolysin induces focal leaks in colonic epithelium: a novel mechanism of bacterial translocation. Cellular Microbiology, 2007, 9, 2530-2540.	1.1	52
53	Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. International Journal of Colorectal Disease, 2009, 24, 1149-1156.	1.0	51
54	Water channels and barriers formed by claudins. Annals of the New York Academy of Sciences, 2017, 1397, 100-109.	1.8	51

#	Article	IF	CITATIONS
55	Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudin-binding domain. Biomaterials, 2018, 161, 129-143.	5.7	49
56	Small intestinal permeability in older adults. Physiological Reports, 2014, 2, e00281.	0.7	48
57	In Colon Epithelia, Clostridium perfringens Enterotoxin Causes Focal Leaks by Targeting Claudins Which are Apically Accessible Due to Tight Junction Derangement. Journal of Infectious Diseases, 2018, 217, 147-157.	1.9	46
58	Defective tight junctions in refractory celiac disease. Annals of the New York Academy of Sciences, 2012, 1258, 43-51.	1.8	45
59	Perspectives on tight junction research. Annals of the New York Academy of Sciences, 2012, 1257, 1-19.	1.8	44
60	Butyrate Induces Intestinal Sodium Absorption via Sp3-Mediated Transcriptional Up-Regulation of Epithelial Sodium Channels. Gastroenterology, 2007, 132, 236-248.	0.6	39
61	Mechanisms of Epithelial Barrier Impairment in HIV Infection. Annals of the New York Academy of Sciences, 2000, 915, 293-303.	1.8	38
62	Probing the <i>cis</i> -arrangement of prototype tight junction proteins claudin-1 and claudin-3. Biochemical Journal, 2015, 468, 449-458.	1.7	37
63	Apoptosis and Intestinal Barrier Function. Annals of the New York Academy of Sciences, 2000, 915, 270-274.	1.8	36
64	Effects of quercetin studied in colonic HTâ€29/B6 cells and rat intestine <i>in vitro</i> . Annals of the New York Academy of Sciences, 2012, 1258, 100-107.	1.8	36
65	Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers. Laboratory Investigation, 2011, 91, 310-324.	1.7	35
66	Gastrointestinal Tract As Entry Route for Hantavirus Infection. Frontiers in Microbiology, 2017, 8, 1721.	1.5	35
67	Curcumin Mitigates Immune-Induced Epithelial Barrier Dysfunction by Campylobacter jejuni. International Journal of Molecular Sciences, 2019, 20, 4830.	1.8	34
68	Zinc treatment is efficient against Escherichia coli α-haemolysin-induced intestinal leakage in mice. Scientific Reports, 2017, 7, 45649.	1.6	31
69	Interleukinâ€13 affects the epithelial sodium channel in the intestine by coordinated modulation of STAT6 and p38 MAPK activity. Journal of Physiology, 2015, 593, 5269-5282.	1.3	30
70	Epithelial barrier dysfunction in lymphocytic colitis through cytokine-dependent internalization of claudin-5 and -8. Journal of Gastroenterology, 2017, 52, 1090-1100.	2.3	29
71	Highâ€Resolution Analysis of Barrier Function. Annals of the New York Academy of Sciences, 2009, 1165, 74-81.	1.8	26
72	Vitamin D in Acute Campylobacteriosis–Results From an Intervention Study Applying a Clinical Campylobacter jejuni Induced Enterocolitis Model. Frontiers in Immunology, 2019, 10, 2094.	2.2	24

#	Article	IF	CITATIONS
73	The Punicalagin Metabolites Ellagic Acid and Urolithin A Exert Different Strengthening and Anti-Inflammatory Effects on Tight Junction-Mediated Intestinal Barrier Function In Vitro. Frontiers in Pharmacology, 2021, 12, 610164.	1.6	24
74	lon transport and barrier function are disturbed in microscopic colitis. Annals of the New York Academy of Sciences, 2012, 1258, 143-148.	1.8	23
75	Glucocorticoid receptor is indispensable for physiological responses to aldosterone in epithelial Na+ channel induction via the mineralocorticoid receptor in a human colonic cell line. European Journal of Cell Biology, 2011, 90, 432-439.	1.6	22
76	Hereditary barrier-related diseases involving the tight junction: lessons from skin and intestine. Cell and Tissue Research, 2015, 360, 723-748.	1.5	21
77	ENaC Dysregulation Through Activation of MEK1/2 Contributes to Impaired Na+ Absorption in Lymphocytic Colitis. Inflammatory Bowel Diseases, 2016, 22, 539-547.	0.9	21
78	Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion. PLoS ONE, 2011, 6, e18107.	1.1	19
79	Myrrh exerts barrier-stabilising and -protective effects in HT-29/B6 and Caco-2 intestinal epithelial cells. International Journal of Colorectal Disease, 2017, 32, 623-634.	1.0	19
80	Tilivalline- and Tilimycin-Independent Effects of Klebsiella oxytoca on Tight Junction-Mediated Intestinal Barrier Impairment. International Journal of Molecular Sciences, 2019, 20, 5595.	1.8	19
81	Diarrheal Mechanisms and the Role of Intestinal Barrier Dysfunction in Campylobacter Infections. Current Topics in Microbiology and Immunology, 2021, 431, 203-231.	0.7	19
82	Expression of tricellular tight junction proteins and the paracellular macromolecule barrier are recovered in remission of ulcerative colitis. BMC Gastroenterology, 2021, 21, 141.	0.8	19
83	Disorders of intestinal secretion and absorption. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2009, 23, 395-406.	1.0	17
84	Campylobacter concisus Impairs Sodium Absorption in Colonic Epithelium via ENaC Dysfunction and Claudin-8 Disruption. International Journal of Molecular Sciences, 2020, 21, 373.	1.8	16
85	Claudins in Intestinal Function and Disease. Current Topics in Membranes, 2010, , 195-227.	0.5	15
86	Tricellulin Effect on Paracellular Water Transport. International Journal of Molecular Sciences, 2019, 20, 5700.	1.8	15
87	The Plant-Derived Glucocorticoid Receptor Agonist Endiandrin A Acts as Co-Stimulator of Colonic Epithelial Sodium Channels (ENaC) via SGK-1 and MAPKs. PLoS ONE, 2012, 7, e49426.	1.1	14
88	Resveratrol Alleviates Acute Campylobacter jejuni Induced Enterocolitis in a Preclinical Murine Intervention Study. Microorganisms, 2020, 8, 1858.	1.6	14
89	Restoration of ENaC expression by glucocorticoid receptor transfection in human HT-29/B6 colon cells. Biochemical and Biophysical Research Communications, 2006, 344, 1065-1070.	1.0	13
90	<i>Yersinia enterocolitica</i> Affects Intestinal Barrier Function in the Colon. Journal of Infectious Diseases, 2016, 213, 1157-1162.	1.9	13

JöRG-DIETER SCHULZKE

#	Article	IF	CITATIONS
91	Vitamin D Reverses Disruption of Gut Epithelial Barrier Function Caused by Campylobacter jejuni. International Journal of Molecular Sciences, 2021, 22, 8872.	1.8	13
92	The Mechanism of Diarrhea in HIV Is Based on an Impaired Epithelial Barrier Function That Could Be Induced by a Specific Cytokine Pattern. Annals of the New York Academy of Sciences, 1998, 859, 267-270.	1.8	12
93	A colonic mineralocorticoid receptor cell model expressing epithelial Na+ channels. Biochemical and Biophysical Research Communications, 2009, 382, 280-285.	1.0	12
94	<i>Campylobacter fetus</i> impairs barrier function in HTâ€29/B6 cells through focal tight junction alterations and leaks. Annals of the New York Academy of Sciences, 2017, 1405, 189-201.	1.8	12
95	Zinc prevents intestinal epithelial barrier dysfunction induced by alpha-hemolysin-producing Escherichia coli 536 infection in porcine colon. Veterinary Microbiology, 2020, 243, 108632.	0.8	12
96	Human duodenal organoidâ€derived monolayers serve as a suitable barrier model for duodenal tissue. Annals of the New York Academy of Sciences, 2022, 1515, 155-167.	1.8	10
97	Clinical Models of Intestinal Adaptation. Annals of the New York Academy of Sciences, 1998, 859, 127-138.	1.8	8
98	Ion Channels of the Gastrointestinal Epithelial Cells. , 2018, , 1363-1404.		8
99	Altered Structural Expression and Enzymatic Activity Parameters in Quiescent Ulcerative Colitis: Are These Potential Normalization Criteria?. International Journal of Molecular Sciences, 2020, 21, 1887.	1.8	8
100	Escherichia coli Alpha-Hemolysin HlyA Induces Host Cell Polarity Changes, Epithelial Barrier Dysfunction and Cell Detachment in Human Colon Carcinoma Caco-2 Cell Model via PTEN-Dependent Dysregulation of Cell Junctions. Toxins, 2021, 13, 520.	1.5	8
101	Norovirus non-structural protein p20 leads to impaired restitution of epithelial defects by inhibition of actin cytoskeleton remodelling. Scandinavian Journal of Gastroenterology, 2010, 45, 1307-1319.	0.6	5
102	Immune-Mediated Aggravation of the Campylobacter concisus-Induced Epithelial Barrier Dysfunction. International Journal of Molecular Sciences, 2021, 22, 2043.	1.8	5
103	New insights into intestinal secretion. Gut, 2014, 63, 1371-1372.	6.1	3
104	Zinc strengthens the jejunal barrier by reversibly tightening the paracellular route. American Journal of Physiology - Renal Physiology, 2017, 313, G537-G548.	1.6	3
105	Epithelial barrier dysfunction as permissive pathomechanism in human intestinal graft-versus-host disease. Bone Marrow Transplantation, 2018, 53, 1083-1086.	1.3	2
106	Phospholipid effects on SGLT1-mediated glucose transport in rabbit ileum brush border membrane vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 182985.	1.4	1
107	Aerolysin disturbs tight junction integrity and epithelial restitution. FASEB Journal, 2011, 25, .	0.2	0
108	Role of the Epithelium in Diseases of the Intestine. Physiology in Health and Disease, 2020, , 77-109.	0.2	0