Dana S Hutchinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2369120/publications.pdf

Version: 2024-02-01

60 papers 2,654 citations

30 h-index 50 g-index

60 all docs 60 docs citations

60 times ranked

4401 citing authors

#	Article	IF	CITATIONS
1	Pharmacophoreâ€guided Virtual Screening to Identify New β ₃ â€adrenergic Receptor Agonists. Molecular Informatics, 2022, 41, .	1.4	6
2	Effect of β ₁ ∫β ₂ â€adrenoceptor blockade on β ₃ â€adrenoceptor activity in the rat cremaster muscle artery. British Journal of Pharmacology, 2021, 178, 1789-1804.	2.7	4
3	GPR55 regulates the responsiveness to, but does not dimerise with, $\hat{l}\pm 1$ A-adrenoceptors. Biochemical Pharmacology, 2021, 188, 114560.	2.0	O
4	The metabolic effects of mirabegron are mediated primarily by \hat{l}^2 3 $\hat{a} \in \mathbb{R}$ drenoceptors. Pharmacology Research and Perspectives, 2020, 8, e00643.	1.1	9
5	Acute \hat{I}^2 -adrenoceptor mediated glucose clearance in brown adipose tissue; a distinct pathway independent of functional insulin signaling. Molecular Metabolism, 2019, 30, 240-249.	3.0	15
6	Therapeutic blockade of activin-A improves NK cell function and antitumor immunity. Science Signaling, 2019, 12, .	1.6	64
7	BRL37344 stimulates GLUT4 translocation and glucose uptake in skeletal muscle via \hat{l}^2 (sub>2-adrenoceptors without causing classical receptor desensitization. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R666-R677.	0.9	16
8	Expression and activity of the calcitonin receptor family in a sample of primary human high-grade gliomas. BMC Cancer, 2019, 19, 157.	1.1	15
9	Adrenoceptor regulation of the mechanistic target of rapamycin in muscle and adipose tissue. British Journal of Pharmacology, 2019, 176, 2433-2448.	2.7	9
10	Adrenoceptors in white, brown, and brite adipocytes. British Journal of Pharmacology, 2019, 176, 2416-2432.	2.7	42
11	Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discovery Today, 2018, 23, 592-604.	3.2	31
12	The PPARÎ ³ agonist rosiglitazone promotes the induction of brite adipocytes, increasing Î ² -adrenoceptor-mediated mitochondrial function and glucose uptake. Cellular Signalling, 2018, 42, 54-66.	1.7	38
13	$\hat{l}\pm$ 1A -Adrenoceptors activate mTOR signalling and glucose uptake in cardiomyocytes. Biochemical Pharmacology, 2018, 148, 27-40.	2.0	20
14	Mirabegron: potential off target effects and uses beyond the bladder. British Journal of Pharmacology, 2018, 175, 4072-4082.	2.7	44
15	Effects of hypoxia-ischemia and inotropes on expression of cardiac adrenoceptors in the preterm fetal sheep. Journal of Applied Physiology, 2018, 125, 1368-1377.	1.2	3
16	Rosiglitazone and a \hat{I}^2 3-Adrenoceptor Agonist Are Both Required for Functional Browning of White Adipocytes in Culture. Frontiers in Endocrinology, 2018, 9, 249.	1.5	25
17	$\hat{l}\pm$ (sub) 1A(/sub)-adrenoceptor stimulation promotes glucose uptake and cell survival in cardiomyocytes - role of mTOR. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-2-28.	0.0	O
18	The gut hormone INSL5 activates multiple signalling pathways and regulates GLP-1 secretion in NCI-H716 cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-5-18.	0.0	O

#	Article	IF	CITATIONS
19	Metabolic effects of mirabegron in mice: implications for use in diabetes. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-5-25.	0.0	0
20	Signal transduction pathways activated by insulinâ€like peptide 5 at the relaxin family peptide RXFP4 receptor. British Journal of Pharmacology, 2017, 174, 1077-1089.	2.7	30
21	Factors influencing biased agonism in recombinant cells expressing the human α _{1A} â€adrenoceptor. British Journal of Pharmacology, 2017, 174, 2318-2333.	2.7	24
22	ML290 is a biased allosteric agonist at the relaxin receptor RXFP1. Scientific Reports, 2017, 7, 2968.	1.6	50
23	Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2. Pharmacological Research, 2017, 116, 87-92.	3.1	30
24	Assessing the anthelmintic activity of pyrazole-5-carboxamide derivatives against Haemonchus contortus. Parasites and Vectors, 2017, 10, 272.	1.0	25
25	The actions of relaxin family peptides on signal transduction pathways activated by the relaxin family peptide receptor RXFP4. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 105-111.	1.4	10
26	Could burning fat start with a brite spark? Pharmacological and nutritional ways to promote thermogenesis. Molecular Nutrition and Food Research, 2016, 60, 18-42.	1.5	39
27	G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction. Molecular Nutrition and Food Research, 2016, 60, 92-102.	1.5	32
28	CIS is a potent checkpoint in NK cell–mediated tumor immunity. Nature Immunology, 2016, 17, 816-824.	7.0	289
29	The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity, 2016, 44, 103-115.	6.6	101
30	DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation. Cell Reports, 2015, 11, 85-97.	2.9	111
31	Response to Comment on Sato et al. Improving Type 2 Diabetes Through a Distinct Adrenergic Signaling Pathway Involving mTORC2 That Mediates Glucose Uptake in Skeletal Muscle. Diabetes 2014;63:4115–4129. Diabetes, 2014, 63, e22-e23.	0.3	7
32	Improving Type 2 Diabetes Through a Distinct Adrenergic Signaling Pathway Involving mTORC2 That Mediates Glucose Uptake in Skeletal Muscle. Diabetes, 2014, 63, 4115-4129.	0.3	101
33	Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation. Journal of Cell Biology, 2014, 207, 365-374.	2.3	138
34	Interaction with Caveolin-1 Modulates G Protein Coupling of Mouse \hat{I}^2 3-Adrenoceptor. Journal of Biological Chemistry, 2012, 287, 20674-20688.	1.6	23
35	Rapid Turnover of Glycogen in Memory Formation. Neurochemical Research, 2012, 37, 2456-2463.	1.6	27
36	β ₂ â€Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor Câ€ŧerminal tail. British Journal of Pharmacology, 2012, 165, 1442-1456.	2.7	25

3

#	Article	IF	CITATIONS
37	$\hat{l}\pm 2$ -Adrenoceptors activate noradrenaline-mediated glycogen turnover in chick astrocytes. Journal of Neurochemistry, 2011, 117, 915-926.	2.1	26
38	Role of βâ€adrenoceptors in glucose uptake in astrocytes using βâ€adrenoceptor knockout mice. British Journal of Pharmacology, 2011, 162, 1700-1715.	2.7	47
39	\hat{l}^2 (sub>1-Adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated \hat{l}^2 (sub>3-adrenergic receptor-knockout mice via nonshivering thermogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1108-E1118.	1.8	55
40	The M3-muscarinic acetylcholine receptor stimulates glucose uptake in L6 skeletal muscle cells by a CaMKK–AMPK–dependent mechanism. Cellular Signalling, 2010, 22, 1104-1113.	1.7	40
41	Ligandâ€directed signalling at βâ€adrenoceptors. British Journal of Pharmacology, 2010, 159, 1022-1038.	2.7	141
42	Astrocytic involvement in learning and memory consolidation. Neuroscience and Biobehavioral Reviews, 2008, 32, 927-944.	2.9	140
43	Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: Potential utility in treatment of diabetes and heart disease., 2008, 119, 291-310.		70
44	Energy metabolism and memory processing: Role of glucose transport and glycogen in responses to adrenoceptor activation in the chicken. Brain Research Bulletin, 2008, 76, 224-234.	1.4	29
45	Role of Î ² -Adrenoceptors in Memory Consolidation: Î ² 3-Adrenoceptors Act on Glucose Uptake and Î ² 2-Adrenoceptors on Glycogenolysis. Neuropsychopharmacology, 2008, 33, 2384-2397. The Î ² 3-Adrenoceptor Agonist	2.8	62
46	4-[[(Hexylamino)carbonyl]amino]-N-[4-[2-[[(2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyl]-ber (L755507) and Antagonist (S)-N-[4-[2-[[3-[3-(Acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]-ethyl]phenyl]benzenesulfonamide (L748337) Activate Different Signaling Pathways in Chinese Hamster Ovary-K1 Cells Stably Expressing	nzenesulfo 1.0	onamide 47
47	the Human Î ² 3-Adrenoceptor. Molecular Pharmacology, 2008, 74, 1417-1428. Memory Processing in the Avian Hippocampus Involves Interactions between Î ² -Adrenoceptors, Glutamate Receptors, and Metabolism. Neuropsychopharmacology, 2008, 33, 2831-2846.	2.8	32
48	Ligand-Directed Signaling at the \hat{l}^2 (sub>3-Adrenoceptor Produced by 3-(2-Ethylphenoxy)-1-[(1, <i>S</i>)-1,2,3,4-tetrahydronapth-1-ylamino]-2 <i>S</i> -2-propanol oxalate (SR59230A) Relative to Receptor Agonists. Molecular Pharmacology, 2007, 72, 1359-1368.	1.0	80
49	β ₂ ―and β ₃ â€Adrenoceptors activate glucose uptake in chick astrocytes by distinct mechanisms: a mechanism for memory enhancement?. Journal of Neurochemistry, 2007, 103, 997-1008.	2.1	43
50	Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase. Cellular Signalling, 2007, 19, 1610-1620.	1.7	45
51	Agonist effects of zinterol at the mouse and human \hat{l}^2 3-adrenoceptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 373, 158-168.	1.4	19
52	AMP-Activated Protein Kinase Activation by Adrenoceptors in L6 Skeletal Muscle Cells: Mediation by Â1-Adrenoceptors Causing Glucose Uptake. Diabetes, 2006, 55, 682-690.	0.3	69
53	$\hat{l}\pm 1$ A-Adrenoceptors Activate Glucose Uptake in L6 Muscle Cells through a Phospholipase C-, Phosphatidylinositol-3 Kinase-, and Atypical Protein Kinase C-Dependent Pathway. Endocrinology, 2005, 146, 901-912.	1.4	45
54	Evidence for Pleiotropic Signaling at the Mouse \hat{l}^2 3-Adrenoceptor Revealed by SR59230A [3-(2-Ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol Oxalate]. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 1064-1074.	1.3	38

#	Article	IF	CITATION
55	$\hat{l}\pm 1$ - and $\hat{l}^2 1$ -Adrenoceptor Signaling Fully Compensates for $\hat{l}^2 3$ -Adrenoceptor Deficiency in Brown Adipocyte Norepinephrine-Stimulated Glucose Uptake. Endocrinology, 2005, 146, 2271-2284.	1.4	64
56	Functional Domains of the Mouse \hat{l}^2 3-Adrenoceptor Associated with Differential G Protein Coupling. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1354-1361.	1.3	25
57	Stereoselectivity for interactions of agonists and antagonists at mouse, rat and human \hat{l}^2 3-adrenoceptors. European Journal of Pharmacology, 2004, 484, 323-331.	1.7	15
58	Mouse \hat{l}^2 3a - and \hat{l}^2 3b -adrenoceptors expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct signalling pathways. British Journal of Pharmacology, 2002, 135, 1903-1914.	2.7	55
59	\hat{l}^2 1 -Adrenoceptors compensate for \hat{l}^2 3 -adrenoceptors in ileum from \hat{l}^2 3 -adrenoceptor knock-out mice. British Journal of Pharmacology, 2001, 132, 433-442.	2.7	36
60	\hat{l}^2 3 -Adrenoceptor regulation and relaxation responses in mouse ileum. British Journal of Pharmacology, 2000, 129, 1251-1259.	2.7	28