Mats Norell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2368591/publications.pdf

Version: 2024-02-01

32	1,046	14	32
papers	citations	h-index	g-index
33	33	33	840
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Running-In (Load and Speed) on Surface Characteristics of Honed Gears. Tribology Transactions, 2019, 62, 412-418.	2.0	13
2	Influence of running-in on surface characteristics of efficiency tested ground gears. Tribology International, 2017, 115, 45-58.	5.9	30
3	Thermal decomposition of N-expanded austenite in 304L and 904L steels. Surface Engineering, 2017, 33, 319-326.	2.2	13
4	A Microstructural and Kinetic Investigation of the KCl-Induced Corrosion of an FeCrAl Alloy at 600°C. Oxidation of Metals, 2015, 84, 105-127.	2.1	40
5	Surface oxidation behavior of Ti–6Al–4V manufactured by Electron Beam Melting (EBM®). Journal of Manufacturing Processes, 2015, 17, 120-126.	5.9	50
6	Multiâ€technique characterization of lowâ€temperature plasma nitrided austenitic AISI 304L and AISI 904L stainless steel. Surface and Interface Analysis, 2014, 46, 856-860.	1.8	4
7	The Initial Oxide Scale Development on a Model FeNiCrAl Alloy at 900°C in Dry and Humid Atmosphere: A Detailed Investigation. Oxidation of Metals, 2014, 82, 225-247.	2.1	10
8	Analysis of wear debris in rolling contact fatigue cracks of pearlitic railway wheels. Wear, 2014, 314, 51-56.	3.1	14
9	Mitigation of Fireside Corrosion in Power Plants: The Combined Effect of Sulfur Dioxide and Potassium Chloride on the Corrosion of a FeCrAl Alloy. Energy & Energy & 2014, 28, 6116-6129.	5.1	13
10	Corrosion at the urea injection in SCRâ€system during component test. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 34-42.	1.5	6
11	Characterization of surface oxides on water-atomized steel powder by XPS/AES depth profiling and nano-scale lateral surface analysis. Applied Surface Science, 2013, 268, 496-506.	6.1	56
12	Role of Nitrogen Uptake During the Oxidation of 304L and 904L Austenitic Stainless Steels. Oxidation of Metals, 2013, 80, 479-491.	2.1	16
13	Surface characterisation of fine inert gas and water atomised stainless steel 316L powders: formation of thermodynamically unstable surface oxide phases. Powder Metallurgy, 2013, 56, 158-163.	1.7	23
14	Corrosion of stainless steels in simulated diesel exhaust environment with urea. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 388-395.	1.5	9
15	Grain boundary microstructure and fatigue crack growth in Allvac 718Plus superalloy. Materials Science & Science & Properties, Microstructure and Processing, 2011, 528, 2570-2580.	5.6	62
16	High Temperature Corrosion of Cast Alloys in Exhaust Environments I-Ductile Cast Irons. Oxidation of Metals, 2008, 69, 13-36.	2.1	40
17	High Temperature Corrosion of Cast Alloys in Exhaust Environments. Il—Cast Stainless Steels. Oxidation of Metals, 2008, 69, 37-62.	2.1	14
18	Effect of temperature gradient and sulfur dioxide addition on erosion – corrosion of iron- and nickelbased alloys. Materials at High Temperatures, 2008, 25, 1-16.	1.0	1

#	Article	IF	CITATIONS
19	Study of Alâ^•Nb interface by spectroscopy of reflected electrons. Journal of Applied Physics, 2007, 101, 064912.	2.5	7
20	Nitride precipitation during high temperature corrosion of ductile cast irons in synthetic exhaust gases. Journal of Physics and Chemistry of Solids, 2005, 66, 530-534.	4.0	13
21	Field test of superheater corrosion in a CFB waste boiler: Part I - Metal loss characteristics. Materials and Corrosion - Werkstoffe Und Korrosion, 2005, 56, 449-458.	1.5	4
22	Field test of superheater corrosion in a CFB waste boiler: Part II - Scale formation characteristics. Materials and Corrosion - Werkstoffe Und Korrosion, 2005, 56, 550-560.	1.5	7
23	Influence of KCl Deposit Morphology on Corrosion of Austenitic Alloys at 500°C. Materials Science Forum, 2004, 461-464, 1015-1022.	0.3	5
24	Scanning Auger electron spectroscopy study of the oxide film formed on dendritic and interdendritic regions of C containing Fe3Al intermetallic. Corrosion Science, 2003, 45, 2717-2728.	6.6	13
25	AES characterization of oxide grains formed on ductile cast irons in exhaust environments. Surface and Interface Analysis, 2002, 34, 535-539.	1.8	22
26	Structural investigations of superconducting multilayers consisting of semiconducting materials. Low Temperature Physics, 2001, 27, 93-95.	0.6	4
27	High-Temperature Corrosion of Cast Irons and Cast Steels in Dry Air. Materials Science Forum, 2001, 369-372, 197-204.	0.3	12
28	Title is missing!. Oxidation of Metals, 2000, 54, 11-26.	2.1	262
29	Title is missing!. Oxidation of Metals, 1999, 52, 95-111.	2.1	243
30	Surface studies of powder metallurgical stainless steel. Surface and Interface Analysis, 1992, 19, 607-614.	1.8	19
31	Thickness determination of surface oxides on metal powder by AES depth profiling. Surface and Interface Analysis, 1992, 19, 71-76.	1.8	18
32	Scale Growth on Austenitic Alloys under KCl Deposits at 500°C. Materials Science Forum, 0, 595-598, 333-342.	0.3	1