Nathan C Gianneschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2368424/publications.pdf Version: 2024-02-01

		26567	38300
211	10,945	56	95
papers	citations	h-index	g-index
217	217	217	13552
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrogel Formation with Cyclic Peptides. Methods in Molecular Biology, 2022, 2371, 427-448.	0.4	2
2	Stimuli Induced Uptake of Protein‣ike Peptide Brush Polymers. Chemistry - A European Journal, 2022, 28,	1.7	6
3	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	11.1	13
4	Stimuliâ€Responsive Liquid Crystal Printheads for Spatial and Temporal Control of Polymerization. Advanced Materials, 2022, , 2106535.	11.1	8
5	Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON. Chemical Science, 2022, 13, 4884-4892.	3.7	7
6	Organic solution-phase transmission electron microscopy of copolymer nanoassembly morphology and dynamics. Cell Reports Physical Science, 2022, 3, 100772.	2.8	11
7	Direct Observation of Emulsion Morphology, Dynamics, and Demulsification. ACS Nano, 2022, 16, 7783-7793.	7.3	15
8	A Catalytically Accessible Polyoxometalate in a Porous Fiber for Degradation of a Mustard Gas Simulant. ACS Applied Materials & Interfaces, 2022, 14, 16687-16693.	4.0	14
9	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
10	Mussel Adhesive-Inspired Proteomimetic Polymer. Journal of the American Chemical Society, 2022, 144, 4383-4392.	6.6	24
11	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	4
12	Rapid Generation of Metal–Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 6674-6680.	6.6	10
13	Interfacial Polyelectrolyte–Surfactant Complexes Regulate Escape of Microdroplets Elastically Trapped in Thermotropic Liquid Crystals. Langmuir, 2022, 38, 332-342.	1.6	2
14	Structural Color Production in Melaninâ€Based Disordered Colloidal Nanoparticle Assemblies in Spherical Confinement. Advanced Optical Materials, 2022, 10, .	3.6	15
15	Aggregation-Suppressed Porous Processable Hexa-Zirconium/Polymer Composites for Detoxification of a Nerve Agent Simulant. Chemistry of Materials, 2022, 34, 4983-4991.	3.2	7
16	Enzyme-Directed Functionalization of Designed, Two-Dimensional Protein Lattices. Biochemistry, 2021, 60, 1050-1062.	1.2	8
17	Cyclic (Alkyl)(Amino)Carbene (CAAC) Gold(I) Complexes as Chemotherapeutic Agents. Chemistry - A European Journal, 2021, 27, 3772-3778.	1.7	18
18	100th Anniversary of Macromolecular Science Viewpoint: Polymeric Materials by <i>In Situ</i> Liquid-Phase Transmission Electron Microscopy. ACS Macro Letters, 2021, 10, 14-38.	2.3	25

#	Article	IF	CITATIONS
19	Structurally Colored Inks from Synthetic Melanin-Based Crosslinked Supraparticles. , 2021, 3, 50-55.		11
20	High efficiency loading of micellar nanoparticles with a light switch for enzyme-induced rapid release of cargo. Biomaterials Science, 2021, 9, 653-657.	2.6	5
21	Enhancing and Mitigating Radiolytic Damage to Soft Matter in Aqueous Phase Liquid-Cell Transmission Electron Microscopy in the Presence of Gold Nanoparticle Sensitizers or Isopropanol Scavengers. Nano Letters, 2021, 21, 1141-1149.	4.5	33
22	Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.	6.6	28
23	Targeted nanoscale therapeutics for myocardial infarction. Biomaterials Science, 2021, 9, 1204-1216.	2.6	9
24	Mapping Grains, Boundaries, and Defects in 2D Covalent Organic Framework Thin Films. Chemistry of Materials, 2021, 33, 1341-1352.	3.2	25
25	Synthetic Porous Melanin. Journal of the American Chemical Society, 2021, 143, 3094-3103.	6.6	30
26	Probing Thermoresponsive Polymerization-Induced Self-Assembly with Variable-Temperature Liquid-Cell Transmission Electron Microscopy. Matter, 2021, 4, 722-736.	5.0	33
27	Unraveling the Structure and Function of Melanin through Synthesis. Journal of the American Chemical Society, 2021, 143, 2622-2637.	6.6	174
28	Allomelanin: A Biopolymer of Intrinsic Microporosity. Journal of the American Chemical Society, 2021, 143, 4005-4016.	6.6	41
29	Peroxidase-Like Reactivity at Iron-Chelation Sites in a Mesoporous Synthetic Melanin. CCS Chemistry, 2021, 3, 1483-1490.	4.6	2
30	Orthogonal Images Concealed Within a Responsive 6â€Dimensional Hypersurface. Advanced Materials, 2021, 33, e2100803.	11.1	16
31	A molecular computing approach to solving optimization problems via programmable microdroplet arrays. Matter, 2021, 4, 1107-1124.	5.0	7
32	Anisotropic Synthetic Allomelanin Materials via Solidâ€State Polymerization of Selfâ€Assembled 1,8â€Dihydroxynaphthalene Dimers. Angewandte Chemie, 2021, 133, 17605-17612.	1.6	0
33	Titelbild: Anisotropic Synthetic Allomelanin Materials via Solidâ€State Polymerization of Selfâ€Assembled 1,8â€Dihydroxynaphthalene Dimers (Angew. Chem. 32/2021). Angewandte Chemie, 2021, 133, 17361-17361.	1.6	0
34	Innovations in Disease State Responsive Soft Materials for Targeting Extracellular Stimuli Associated with Cancer, Cardiovascular Disease, Diabetes, and Beyond. Advanced Materials, 2021, 33, e2007504.	11.1	23
35	Anisotropic Synthetic Allomelanin Materials via Solidâ€State Polymerization of Selfâ€Assembled 1,8â€Dihydroxynaphthalene Dimers. Angewandte Chemie - International Edition, 2021, 60, 17464-17471.	7.2	18
36	The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency. Journal of the Royal Society Interface, 2021, 18, 20210236.	1.5	10

#	Article	IF	CITATIONS
37	Non-Iridescent Structural Color Control <i>via</i> Inkjet Printing of Self-Assembled Synthetic Melanin Nanoparticles. Chemistry of Materials, 2021, 33, 6433-6442.	3.2	15
38	Glycopolymer Microarrays with Subâ€Femtomolar Avidity for Glycan Binding Proteins Prepared by Graftedâ€To/Graftedâ€From Photopolymerizations. Angewandte Chemie - International Edition, 2021, 60, 20350-20357.	7.2	8
39	Glycopolymer Microarrays with Subâ€Femtomolar Avidity for Glycan Binding Proteins Prepared by Graftedâ€To/Graftedâ€From Photopolymerizations. Angewandte Chemie, 2021, 133, 20513-20520.	1.6	0
40	Degradable polymers via olefin metathesis polymerization. Progress in Polymer Science, 2021, 120, 101427.	11.8	48
41	pHâ€Responsive Chargeâ€Conversion Progelator Peptides. Advanced Functional Materials, 2021, 31, 2007733.	7.8	11
42	Dipeptide Nanostructure Assembly and Dynamics <i>via in Situ</i> Liquid-Phase Electron Microscopy. ACS Nano, 2021, 15, 16542-16551.	7.3	21
43	Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scattering. Nature Communications, 2021, 12, 6568.	5.8	19
44	Programmable Materials. Advanced Materials, 2021, 33, e2107344.	11.1	8
45	Origin of Proteolytic Stability of Peptide-Brush Polymers as Globular Proteomimetics. ACS Central Science, 2021, 7, 2063-2072.	5.3	10
46	Acid Exfoliation of Imineâ€linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie, 2020, 132, 5203-5209.	1.6	31
47	Acid Exfoliation of Imineâ€linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie - International Edition, 2020, 59, 5165-5171.	7.2	128
48	Insights into the Enhanced Catalytic Activity of Cytochrome c When Encapsulated in a Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 18576-18582.	6.6	73
49	Proapoptotic Peptide Brush Polymer Nanoparticles via Photoinitiated Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie, 2020, 132, 19298-19304.	1.6	10
50	Proapoptotic Peptide Brush Polymer Nanoparticles via Photoinitiated Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2020, 59, 19136-19142.	7.2	49
51	Characterization of broadband complex refractive index of synthetic melanin coatings and their changes after ultraviolet irradiation. Applied Physics Letters, 2020, 117, .	1.5	22
52	Modulation of crystal growth and structure within cerium-based metal–organic frameworks. CrystEngComm, 2020, 22, 8182-8188.	1.3	17
53	Bioinspired Chemoenzymatic Route to Artificial Melanin for Hair Pigmentation. Chemistry of Materials, 2020, 32, 9201-9210.	3.2	20
54	Chemical and physical transformations of carbon-based nanomaterials observed by liquid phase transmission electron microscopy. MRS Bulletin, 2020, 45, 727-737.	1.7	8

#	Article	IF	CITATIONS
55	Degradable Polyphosphoramidate via Ring-Opening Metathesis Polymerization. ACS Macro Letters, 2020, 9, 1417-1422.	2.3	30
56	Inside polyMOFs: layered structures in polymer-based metal–organic frameworks. Chemical Science, 2020, 11, 10523-10528.	3.7	12
57	Highâ€Sensitivity Acoustic Molecular Sensors Based on Largeâ€Area, Sprayâ€Coated 2D Covalent Organic Frameworks. Advanced Materials, 2020, 32, e2004205.	11.1	67
58	Insights into the Structure and Dynamics of Metal–Organic Frameworks via Transmission Electron Microscopy. Journal of the American Chemical Society, 2020, 142, 17224-17235.	6.6	57
59	Electronically Coupled 2D Polymer/MoS ₂ Heterostructures. Journal of the American Chemical Society, 2020, 142, 21131-21139.	6.6	25
60	Structural Transformation and Morphology of Dipeptide Supramolecular Assemblies by Liquid-phase TEM. Microscopy and Microanalysis, 2020, 26, 1442-1443.	0.2	0
61	Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angewandte Chemie - International Edition, 2020, 59, 19762-19772.	7.2	14
62	In Situ Ni ²⁺ Stain for Liposome Imaging by Liquid-Cell Transmission Electron Microscopy. Nano Letters, 2020, 20, 4292-4297.	4.5	21
63	<i>In Situ</i> Monitoring of the Seeding and Growth of Silver Metal–Organic Nanotubes by Liquid-Cell Transmission Electron Microscopy. ACS Nano, 2020, 14, 8735-8743.	7.3	19
64	Complex Nanoparticle Diffusional Motion in Liquid-Cell Transmission Electron Microscopy. Journal of Physical Chemistry C, 2020, 124, 14881-14890.	1.5	18
65	Squeezing the box: isoreticular contraction of pyrene-based linker in a Zr-based metal–organic framework for Xe/Kr separation. Dalton Transactions, 2020, 49, 6553-6556.	1.6	11
66	Printing a Wide Gamut of Saturated Structural Colors Using Binary Mixtures, With Applications in Anticounterfeiting. ACS Applied Materials & Interfaces, 2020, 12, 19882-19889.	4.0	20
67	Polymer brush hypersurface photolithography. Nature Communications, 2020, 11, 1244.	5.8	65
68	Radical-Enriched Artificial Melanin. Chemistry of Materials, 2020, 32, 5759-5767.	3.2	17
69	Self-Assembly of Macromolecules Within Single Topological Defects of Nematic Solvents. Chemistry of Materials, 2020, 32, 6753-6764.	3.2	5
70	Selenomelanin: An Abiotic Selenium Analogue of Pheomelanin. Journal of the American Chemical Society, 2020, 142, 12802-12810.	6.6	34
71	Phase Transitions in Metal–Organic Frameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ X-ray Diffraction. Journal of the American Chemical Society, 2020, 142, 4609-4615.	6.6	69
72	Multicolor Polymeric Nanoparticle Neuronal Tracers. ACS Central Science, 2020, 6, 436-445.	5.3	4

#	Article	IF	CITATIONS
73	Optical monitoring of polymerizations in droplets with high temporal dynamic range. Chemical Science, 2020, 11, 2647-2656.	3.7	18
74	Poly(peptide): Synthesis, Structure, and Function of Peptide–Polymer Amphiphiles and Protein-like Polymers. Accounts of Chemical Research, 2020, 53, 400-413.	7.6	50
75	Mimicking Natural Human Hair Pigmentation with Synthetic Melanin. ACS Central Science, 2020, 6, 1179-1188.	5.3	55
76	Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angewandte Chemie, 2020, 132, 19930-19940.	1.6	2
77	Paclitaxel-terminated peptide brush polymers. Chemical Communications, 2020, 56, 6778-6781.	2.2	13
78	Investigating the interaction of Grammostola rosea venom peptides and model lipid bilayers with solid-state NMR and electron microscopy techniques. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 151-160.	1.4	3
79	Peptide Brush Polymers for Efficient Delivery of a Gene Editing Protein to Stem Cells. Angewandte Chemie - International Edition, 2019, 58, 15646-15649.	7.2	21
80	Peptide Brush Polymers for Efficient Delivery of a Gene Editing Protein to Stem Cells. Angewandte Chemie, 2019, 131, 15793-15796.	1.6	6
81	Block Copolymer Amphiphile Phase Diagrams by High-Throughput Transmission Electron Microscopy. Macromolecules, 2019, 52, 5529-5537.	2.2	24
82	Antitumor Activity of 1,18-Octadecanedioic Acid-Paclitaxel Complexed with Human Serum Albumin. Journal of the American Chemical Society, 2019, 141, 11765-11769.	6.6	61
83	Tuning the ultrasonic and photoacoustic response of polydopamine-stabilized perfluorocarbon contrast agents. Journal of Materials Chemistry B, 2019, 7, 4833-4842.	2.9	12
84	Hierarchical Spidroin Micellar Nanoparticles as the Precursors of Spider Silks. Microscopy and Microanalysis, 2019, 25, 1346-1347.	0.2	0
85	Mechanism of UVA Degradation of Synthetic Eumelanin. Biomacromolecules, 2019, 20, 4593-4601.	2.6	19
86	Delivery of Immunotherapeutic Nanoparticles to Tumors via Enzymeâ€Đirected Assembly. Advanced Healthcare Materials, 2019, 8, e1901105.	3.9	35
87	Rücktitelbild: Bioactive Peptide Brush Polymers via Photoinduced Reversibleâ€Deactivation Radical Polymerization (Angew. Chem. 48/2019). Angewandte Chemie, 2019, 131, 17644-17644.	1.6	0
88	Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks. ACS Central Science, 2019, 5, 1892-1899.	5.3	44
89	Bioactive Peptide Brush Polymers via Photoinduced Reversibleâ€Đeactivation Radical Polymerization. Angewandte Chemie, 2019, 131, 17520-17525.	1.6	6
90	Bioactive Peptide Brush Polymers via Photoinduced Reversibleâ€Deactivation Radical Polymerization. Angewandte Chemie - International Edition, 2019, 58, 17359-17364.	7.2	42

#	Article	IF	CITATIONS
91	Self-assembling peptides imaged by correlated liquid cell transmission electron microscopy and MALDI-imaging mass spectrometry. Nature Communications, 2019, 10, 4837.	5.8	56
92	Artificial Allomelanin Nanoparticles. ACS Nano, 2019, 13, 10980-10990.	7.3	57
93	Experimental and theoretical evidence for molecular forces driving surface segregation in photonic colloidal assemblies. Science Advances, 2019, 5, eaax1254.	4.7	19
94	Spatiotemporal control over the host–guest characteristics of a stimulus-triggerable trifunctional polymer assembly. Polymer Chemistry, 2019, 10, 1423-1430.	1.9	3
95	Elucidating the Growth of Metal–Organic Nanotubes Combining Isoreticular Synthesis with Liquid-Cell Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 10177-10182.	6.6	42
96	One-pot universal initiation-growth methods from a liquid crystalline block copolymer. Nature Communications, 2019, 10, 2397.	5.8	39
97	Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Materials Horizons, 2019, 6, 1868-1876.	6.4	62
98	Enzyme-Induced Kinetic Control of Peptide–Polymer Micelle Morphology. ACS Macro Letters, 2019, 8, 676-681.	2.3	22
99	Entropic effects enable life at extreme temperatures. Science Advances, 2019, 5, eaaw4783.	4.7	7
100	Bacterial Model Membranes Deform (<i>resp</i> . Persist) upon Ni ²⁺ Binding to Inner Core (<i>resp</i> . O-Antigen) of Lipopolysaccharides. Journal of Physical Chemistry B, 2019, 123, 4258-4270.	1.2	2
101	Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nature Communications, 2019, 10, 1735.	5.8	79
102	Ring-opening metathesis polymerization-induced self-assembly (ROMPISA) of a cisplatin analogue for high drug-loaded nanoparticles. Polymer Chemistry, 2019, 10, 2996-3000.	1.9	28
103	Recent Advances in Amphiphilic Polymer–Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies. Bioconjugate Chemistry, 2019, 30, 1889-1904.	1.8	47
104	Interrogating Kinetic versus Thermodynamic Topologies of Metal–Organic Frameworks via Combined Transmission Electron Microscopy and X-ray Diffraction Analysis. Journal of the American Chemical Society, 2019, 141, 6146-6151.	6.6	94
105	Fluorous-phase iron oxide nanoparticles as enhancers of acoustic droplet vaporization of perfluorocarbons with supra-physiologic boiling point. Journal of Controlled Release, 2019, 302, 54-62.	4.8	11
106	Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles. Chemical Science, 2019, 10, 3796-3801.	3.7	118
107	Emissive Single-Crystalline Boroxine-Linked Colloidal Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 19728-19735.	6.6	79
108	UV-responsive cyclic peptide progelator bioinks. Faraday Discussions, 2019, 219, 44-57.	1.6	4

#	Article	IF	CITATIONS
109	Single Crystals of Electrically Conductive Two-Dimensional Metal–Organic Frameworks: Structural and Electrical Transport Properties. ACS Central Science, 2019, 5, 1959-1964.	5.3	211
110	Enzymeâ€Responsive Polymer Nanoparticles via Ringâ€Opening Metathesis Polymerizationâ€Induced Selfâ€Assembly. Macromolecular Rapid Communications, 2019, 40, e1800467.	2.0	36
111	Phosphorescent Pt(<scp>ii</scp>) complexes spatially arrayed in micellar polymeric nanoparticles providing dual readout for multimodal imaging. Chemical Communications, 2019, 55, 501-504.	2.2	18
112	Gadolinium Doping Enhances the Photoacoustic Signal of Synthetic Melanin Nanoparticles: A Dual Modality Contrast Agent for Stem Cell Imaging. Chemistry of Materials, 2019, 31, 251-259.	3.2	64
113	Bait-and-Switch Supramolecular Strategy To Generate Noncationic RNA–Polymer Complexes for RNA Delivery. Biomacromolecules, 2019, 20, 435-442.	2.6	31
114	Design Principles for Triggerable Polymeric Amphiphiles with Mesogenic Side Chains for Multiscale Responses with Liquid Crystals. Macromolecules, 2018, 51, 1978-1985.	2.2	11
115	Polymerization-Induced Self-Assembly of Micelles Observed by Liquid Cell Transmission Electron Microscopy. ACS Central Science, 2018, 4, 543-547.	5.3	89
116	Multi‧cale Responses of Liquid Crystals Triggered by Interfacial Assemblies of Cleavable Homopolymers. ChemPhysChem, 2018, 19, 2037-2045.	1.0	16
117	Lipophilic indocarbocyanine conjugates for efficient incorporation of enzymes, antibodies and small molecules into biological membranes. Biomaterials, 2018, 161, 57-68.	5.7	11
118	Self-Transfecting Micellar RNA: Modulating Nanoparticle Cell Interactions via High Density Display of Small Molecule Ligands on Micelle Coronas. Bioconjugate Chemistry, 2018, 29, 126-135.	1.8	26
119	Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 1348-1357.	6.6	51
120	Aqueous-Phase Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro Letters, 2018, 7, 401-405.	2.3	61
121	Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy. Accounts of Chemical Research, 2018, 51, 3-11.	7.6	78
122	Lipogels for Encapsulation of Hydrophilic Proteins and Hydrophobic Small Molecules. Biomacromolecules, 2018, 19, 132-140.	2.6	8
123	Discovering de novo peptide substrates for enzymes using machine learning. Nature Communications, 2018, 9, 5253.	5.8	55
124	Tumor Retention of Enzyme-Responsive Pt(II) Drug-Loaded Nanoparticles Imaged by Nanoscale Secondary Ion Mass Spectrometry and Fluorescence Microscopy. ACS Central Science, 2018, 4, 1477-1484.	5.3	39
125	Gas Absorption and Pore Breathing of Metal-Organic Frameworks Studied Using in situ Environmental Transmission Electron Microscopy (ETEM). Microscopy and Microanalysis, 2018, 24, 1880-1881.	0.2	1
126	Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11507-11512.	3.3	46

#	Article	IF	CITATIONS
127	Water Permeability and Elastic Properties of an Archaea Inspired Lipid Synthesized by Click Chemistry. Chemistry of Materials, 2018, 30, 3618-3622.	3.2	6
128	Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science, 2018, 361, 52-57.	6.0	474
129	Analytical STEM Investigation of the Post-Synthetic Modification (PMS) of Metal-Organic Frameworks (MOFs): Metal- and Ligand-Exchange in UiO-66. Microscopy and Microanalysis, 2018, 24, 1970-1971.	0.2	3
130	Colloidal Covalent Organic Frameworks. ACS Central Science, 2017, 3, 58-65.	5.3	216
131	Characterization of drug encapsulation and retention in archaea-inspired tetraether liposomes. Organic and Biomolecular Chemistry, 2017, 15, 2157-2162.	1.5	33
132	Charged Macromolecular Rhenium Bipyridine Catalysts with Tunable CO 2 Reduction Potentials. Chemistry - A European Journal, 2017, 23, 8619-8622.	1.7	30
133	Mimicking Melanosomes: Polydopamine Nanoparticles as Artificial Microparasols. ACS Central Science, 2017, 3, 564-569.	5.3	118
134	Enzyme-targeted nanoparticles for delivery to ischemic skeletal muscle. Polymer Chemistry, 2017, 8, 5212-5219.	1.9	19
135	Bio-inspired CO ₂ reduction by a rhenium tricarbonyl bipyridine-based catalyst appended to amino acids and peptidic platforms: incorporating proton relays and hydrogen-bonding functional groups. Faraday Discussions, 2017, 198, 279-300.	1.6	42
136	Polymer-Stabilized Perfluorobutane Nanodroplets for Ultrasound Imaging Agents. Journal of the American Chemical Society, 2017, 139, 15-18.	6.6	59
137	Tunable, Metal-Loaded Polydopamine Nanoparticles Analyzed by Magnetometry. Chemistry of Materials, 2017, 29, 8195-8201.	3.2	80
138	Peptide Brush Polymers and Nanoparticles with Enzyme-Regulated Structure and Charge for Inducing or Evading Macrophage Cell Uptake. ACS Nano, 2017, 11, 9877-9888.	7.3	45
139	High Relaxivity Gadoliniumâ€Polydopamine Nanoparticles. Small, 2017, 13, 1701830.	5.2	48
140	Bioinspired bright noniridescent photonic melanin supraballs. Science Advances, 2017, 3, e1701151.	4.7	177
141	Pore Breathing of Metal–Organic Frameworks by Environmental Transmission Electron Microscopy. Journal of the American Chemical Society, 2017, 139, 13973-13976.	6.6	56
142	Melanin-Inspired Polymeric Peptide Pigments with Tunable Sequence-Dependent Behavior. CheM, 2017, 3, 28-30.	5.8	3
143	ROMPISA: Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 925-929.	2.3	108
144	Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy. Journal of the American Chemical Society, 2017, 139, 17140-17151.	6.6	118

#	Article	IF	CITATIONS
145	Frontiers in Nanointerfaces Research. Small, 2017, 13, 1703364.	5.2	2
146	Micellar Thrombin-Binding Aptamers: Reversible Nanoscale Anticoagulants. Journal of the American Chemical Society, 2017, 139, 16442-16445.	6.6	38
147	Assembling and Powering Up Nanostructures!. ChemNanoMat, 2017, 3, 668-669.	1.5	0
148	Enzyme-Responsive Nanoparticles for the Treatment of Disease. Methods in Molecular Biology, 2017, 1570, 223-238.	0.4	2
149	Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles. Chemistry of Materials, 2016, 28, 5516-5521.	3.2	101
150	Polycatechol Nanoparticle MRI Contrast Agents. Small, 2016, 12, 668-677.	5.2	64
151	Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 507-514.	0.2	12
152	Cellular Delivery of Nanoparticles Revealed with Combined Optical and Isotopic Nanoscopy. ACS Nano, 2016, 10, 4046-4054.	7.3	36
153	Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy. ACS Central Science, 2016, 2, 40-47.	5.3	74
154	Fluorocarbon Modified Low-Molecular-Weight Polyethylenimine for siRNA Delivery. Bioconjugate Chemistry, 2016, 27, 1784-1788.	1.8	39
155	Structure and Function of Iron-Loaded Synthetic Melanin. ACS Nano, 2016, 10, 10186-10194.	7.3	127
156	Biosynthetic Polymers as Functional Materials. Macromolecules, 2016, 49, 4379-4394.	2.2	67
157	Blending block copolymer micelles in solution; obstacles of blending. Polymer Chemistry, 2016, 7, 1577-1583.	1.9	29
158	Polymeric Gd-DOTA amphiphiles form spherical and fibril-shaped nanoparticle MRI contrast agents. Chemical Science, 2016, 7, 4230-4236.	3.7	26
159	Dual-responsive nanoparticles release cargo upon exposure to matrix metalloproteinase and reactive oxygen species. Chemical Communications, 2016, 52, 2126-2128.	2.2	24
160	Activating peptides for cellular uptake via polymerization into high density brushes. Chemical Science, 2016, 7, 989-994.	3.7	57
161	Dual responsive polymeric nanoparticles prepared by direct functionalization of polylactic acid-based polymers via graft-from ring opening metathesis polymerization. Chemical Communications, 2016, 52, 567-570.	2.2	19
162	Liquid Crystals: Liquid Crystal Interfaces Programmed with Enzyme-Responsive Polymers and Surfactants (Small 43/2015). Small, 2015, 11, 5722-5722.	5.2	1

#	Article	IF	CITATIONS
163	Observing the Self-assembly of Metal-Organic Frameworks by In-Situ Liquid Cell TEM. Microscopy and Microanalysis, 2015, 21, 2445-2446.	0.2	3
164	Enzymeâ€Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Advanced Materials, 2015, 27, 5547-5552.	11.1	229
165	Liquid Crystal Interfaces Programmed with Enzymeâ€Responsive Polymers and Surfactants. Small, 2015, 11, 5747-5751.	5.2	21
166	Therapeutic Enzymeâ€Responsive Nanoparticles for Targeted Delivery and Accumulation in Tumors. Advanced Materials, 2015, 27, 4611-4615.	11.1	218
167	Cryo-Transmission Electron Microscopy of Sea Spray Aerosols. Microscopy and Microanalysis, 2015, 21, 633-634.	0.2	0
168	Observing the Growth of Metal–Organic Frameworks by <i>in Situ</i> Liquid Cell Transmission Electron Microscopy. Journal of the American Chemical Society, 2015, 137, 7322-7328.	6.6	207
169	Phase Diagrams of Polynorbornene Amphiphilic Block Copolymers in Solution. Macromolecules, 2015, 48, 1152-1161.	2.2	50
170	Bio-Inspired Structural Colors Produced <i>via</i> Self-Assembly of Synthetic Melanin Nanoparticles. ACS Nano, 2015, 9, 5454-5460.	7.3	244
171	Developing injectable nanomaterials to repair the heart. Current Opinion in Biotechnology, 2015, 34, 225-231.	3.3	52
172	Soft nanomaterials analysed by in situ liquid TEM: Towards high resolution characterisation of nanoparticles in motion. Perspectives in Science, 2015, 6, 106-112.	0.6	13
173	Stimuli-Responsive Materials: Enzyme-Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction (Adv. Mater. 37/2015). Advanced Materials, 2015, 27, 5446-5446.	11.1	3
174	Enzyme-regulated topology of a cyclic peptide brush polymer for tuning assembly. Chemical Communications, 2015, 51, 17108-17111.	2.2	17
175	Dye Encapsulation in Polynorbornene Micelles. Langmuir, 2015, 31, 9707-9717.	1.6	9
176	The Copolymer Blending Method: A New Approach for Targeted Assembly of Micellar Nanoparticles. Macromolecules, 2015, 48, 6516-6522.	2.2	40
177	Stimuli-Responsive Nanomaterials for Biomedical Applications. Journal of the American Chemical Society, 2015, 137, 2140-2154.	6.6	442
178	Tapping a Bacterial Enzymatic Pathway for the Preparation and Manipulation of Synthetic Nanomaterials. Journal of the American Chemical Society, 2014, 136, 17378-17381.	6.6	10
179	Intracellular mRNA Regulation with Self-Assembled Locked Nucleic Acid Polymer Nanoparticles. Journal of the American Chemical Society, 2014, 136, 7615-7618.	6.6	62
180	Dynamics of Soft Nanomaterials Captured by Transmission Electron Microscopy in Liquid Water. Journal of the American Chemical Society, 2014, 136, 1162-1165.	6.6	96

#	Article	IF	CITATIONS
181	Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 990-995.	3.3	302
182	Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity. Journal of the American Chemical Society, 2014, 136, 15422-15437.	6.6	67
183	Labelling polymers and micellar nanoparticles via initiation, propagation and termination with ROMP. Polymer Chemistry, 2014, 5, 1954-1964.	1.9	44
184	Poly(oligonucleotide). Journal of the American Chemical Society, 2014, 136, 11216-11219.	6.6	40
185	In-Situ Liquid Transmission Electron Microscopy (TEM) for the analysis of Metal Organic Frameworks (MOFs). Microscopy and Microanalysis, 2014, 20, 1614-1615.	0.2	2
186	Enzyme-Directed Assembly of Nanoparticles in Tumors Monitored by <i>in Vivo</i> Whole Animal Imaging and <i>ex Vivo</i> Super-Resolution Fluorescence Imaging. Journal of the American Chemical Society, 2013, 135, 18710-18713.	6.6	104
187	Polymerization of a peptide-based enzyme substrate. Chemical Communications, 2013, 49, 2873.	2.2	32
188	Themed issue on nanoparticles in biology. Journal of Materials Chemistry B, 2013, 1, 5174.	2.9	1
189	Polymerization of protecting-group-free peptides via ROMP. Polymer Chemistry, 2013, 4, 3929.	1.9	64
190	Nuclease-Resistant DNA <i>via</i> High-Density Packing in Polymeric Micellar Nanoparticle Coronas. ACS Nano, 2013, 7, 1379-1387.	7.3	88
191	Enzymeâ€Directed Assembly of a Nanoparticle Probe in Tumor Tissue. Advanced Materials, 2013, 25, 3599-3604.	11.1	78
192	Biological stimuli and biomolecules in the assembly and manipulation of nanoscale polymeric particles. Chemical Science, 2012, 3, 1363.	3.7	79
193	Fluorogenic enzyme-responsive micellar nanoparticles. Chemical Science, 2012, 3, 2690.	3.7	51
194	Enzyme-directed assembly and manipulation of organic nanomaterials. Chemical Communications, 2011, 47, 11814.	2.2	74
195	DNA–nanoparticle micelles as supramolecular fluorogenic substrates enabling catalytic signal amplification and detection by DNAzyme probes. Chemical Communications, 2011, 47, 167-169.	2.2	28
196	Controlling and Switching the Morphology of Micellar Nanoparticles with Enzymes. Journal of the American Chemical Society, 2011, 133, 8392-8395.	6.6	166
197	A Morphologyâ€Dependent Bioâ€organic Template for Inorganic Nanowire Synthesis. Small, 2011, 7, 2041-2046.	5.2	12
198	Special Issue Dedicated to Chad Mirkin: 20 Years of Influential Research. Small, 2011, 7, 1851-1851.	5.2	0

#	Article	IF	CITATIONS
199	Enhanced Magnetic Resonance Contrast of Fe ₃ O ₄ Nanoparticles Trapped in a Porous Silicon Nanoparticle Host. Advanced Materials, 2011, 23, H248-53.	11.1	68
200	Xâ€Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide‣abeled Bismuth Sulfide Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 12308-12311.	7.2	190
201	Programmable Shapeâ€Shifting Micelles. Angewandte Chemie - International Edition, 2010, 49, 5076-5080.	7.2	201
202	Smart Lipids for Programmable Nanomaterials. Nano Letters, 2010, 10, 2690-2693.	4.5	73
203	Facile Procedure for Generating Side Chain Functionalized Poly(α-hydroxy acid) Copolymers from Aldehydes via a Versatile Passerini-Type Condensation. Organic Letters, 2010, 12, 3560-3563.	2.4	36
204	Allosterically Regulated Supramolecular Catalysis of Acyl Transfer Reactions for Signal Amplification and Detection of Small Molecules. Journal of the American Chemical Society, 2007, 129, 10149-10158.	6.6	109
205	Design of Molecular Logic Devices Based on a Programmable DNA-Regulated Semisynthetic Enzyme. Angewandte Chemie - International Edition, 2007, 46, 3955-3958.	7.2	71
206	Supramolecular Allosteric Cofacial Porphyrin Complexes. Journal of the American Chemical Society, 2006, 128, 16286-16296.	6.6	131
207	Development of a Coordination Chemistry-Based Approach for Functional Supramolecular Structures. Accounts of Chemical Research, 2005, 38, 825-837.	7.6	530
208	Signal Amplification and Detection via a Supramolecular Allosteric Catalyst. Journal of the American Chemical Society, 2005, 127, 1644-1645.	6.6	185
209	A Supramolecular Approach to an Allosteric Catalyst. Journal of the American Chemical Society, 2003, 125, 10508-10509.	6.6	253
210	A Tetranuclear Heterobimetallic Square Formed from the Cooperative Ligand Binding Properties of Square Planar and Tetrahedral Metal Centers. Inorganic Chemistry, 2002, 41, 5326-5328.	1.9	23
211	Dinuclear Platinum Complexes with Hydrogen-Bonding Functionality:  Noncovalent Assembly of Nanoscale Cyclic Arrays. Journal of the American Chemical Society, 2000, 122, 8474-8479.	6.6	65