List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2367872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cu-Catalyzed C _(sp3) –N Coupling and Alkene Carboamination Enabled by Ligand-Promoted Selective Hydrazine Transfer to Alkyl Radicals. ACS Catalysis, 2022, 12, 3269-3278.	11.2	14
2	Construction of heterocyclic rings from cyclopropenes. Organic and Biomolecular Chemistry, 2022, 20, 3847-3869.	2.8	8
3	A straightforward route to alkyl 5â€arylthiophene â€2â€thiocarboxylates from alkyl 2â€aroyl â€1â€chlorocyclopropanecarboxylates. Journal of Heterocyclic Chemistry, 2021, 58, 882-891.	2.6	1
4	Iron-Catalyzed Cyanoalkylation of Glycine Derivatives Promoted by Pyridine-Oxazoline Ligands. ACS Catalysis, 2021, 11, 4288-4293.	11.2	25
5	Synthesis of methyl 1, 5â€diarylâ€1 H â€pyrroleâ€2â€carboxylates via acidâ€catalyzed ringâ€opening/ringâ€closi sequence. Journal of Heterocyclic Chemistry, 2021, 58, 1755-1765.	ure 2.6	3
6	Regioselective Synthesis of 6-Chlorofulvene and 6-Aminofulvene via Keto–Enol Tautomerism. Journal of Chemical Education, 2020, 97, 3829-3834.	2.3	1
7	Intermolecular Trifluoromethyl-Hydrazination of Alkenes Enabled by Organic Photoredox Catalysis. Organic Letters, 2020, 22, 1924-1928.	4.6	46
8	Polarity-Reversed Addition of Enol Ethers to Imines under Visible Light: Redox-Neutral Access to Azide-Containing Amino Acids. Organic Letters, 2019, 21, 8464-8468.	4.6	20
9	Catalytic Azidoâ€Hydrazination of Alkenes Enabled by Visible Light: Mechanistic Studies and Synthetic Applications. Advanced Synthesis and Catalysis, 2019, 361, 5565-5575.	4.3	22
10	Thiol-ene synthesis of thioether/carboxyl-functionalized polymers for selective adsorption of silver (I) ions. Chemical Engineering Journal, 2019, 375, 121935.	12.7	36
11	Formylation of Fluoroalkyl Imines through Visible-Light-Enabled H-Atom Transfer Catalysis: Access to Fluorinated α-Amino Aldehydes. Organic Letters, 2019, 21, 2019-2024.	4.6	34
12	Synthesis of 2â€Nitrothiophenes <i>via</i> Tandem Henry Reaction and Nucleophilic Substitution on Sulfur from βâ€Thiocyanatopropenals. Journal of Heterocyclic Chemistry, 2019, 56, 670-675.	2.6	1
13	Formal [3 + 3] Cycloaddition Reactions between Electron-Deficient Cyclopropenes and Hydrazones: A Route to Alkyl 1,4,5,6-Tetrahydropyridazine-3-carboxylates. Journal of Organic Chemistry, 2019, 84, 2093-2101.	3.2	19
14	Site-Specific Functionalization of 1,3-Dioxolane with Imines: A Radical Chain Approach to Masked α-Amino Aldehydes. Journal of Organic Chemistry, 2018, 83, 5256-5266.	3.2	14
15	Enhanced copper adsorption by DTPA-chitosan/alginate composite beads: Mechanism and application in simulated electroplating wastewater. Chemical Engineering Journal, 2018, 339, 322-333.	12.7	133
16	Formal cycloaddition of ethyl 2-aroyl-1-chlorocyclopropanecarboxylates:facile synthesis of diversified tetrahydrocyclopropa[b]chromenes. Tetrahedron, 2018, 74, 1486-1491.	1.9	7
17	Oneâ€Pot Synthesis of Quinazolinâ€4(3 <i>H</i>)â€ones through Anodic Oxidation and the Related Mechanistic Studies. Advanced Synthesis and Catalysis, 2018, 360, 4764-4773.	4.3	34
18	Construction of Substituted 2-Aminophenols via Formal [3 + 3] Cycloaddition of Alkyl 2-Aroyl-1-chlorocyclopropanecarboxylate with in Situ Generated Enamines. Organic Letters, 2018, 20, 6943-6947.	4.6	17

#	Article	IF	CITATIONS
19	Ethyl 6-Hydroxyfulvene-1-Carboxylate: A Reagent Discriminating Primary Amines from Secondary Amines. Journal of Organic Chemistry, 2018, 83, 6681-6689.	3.2	2
20	Regioselective addition of phosphites to acyl cyclopropanes and following rearrangements: a facile access to enol phosphates. Organic and Biomolecular Chemistry, 2018, 16, 5907-5912.	2.8	6
21	Metal-Free Synthesis of Pyrrolo[1,2-a]quinoxalines Mediated by TEMPO Oxoammonium Salts. Synthesis, 2018, 50, 2727-2740.	2.3	31
22	Stereoselective Oneâ€Pot Sequential Dehydrochlorination/ <i>trans</i> â€Hydrofluorination Reaction of βâ€Chloroâ€i±,βâ€unsaturated Aldehydes or Ketones: Facile Access to (<i>Z</i>)â€i²â€Fluoroâ€i²â€arylenals/βâ€Fluoroâ€i²â€arylenones. Advanced Synthesis and Catalysis, 2017, 359	4.3 , 4348-43	18 58.
23	Direct Metalâ€Free C–H Functionalization of Cyclic Ethers with Schiff Bases Through an Azobisisobutyronitrileâ€Initiated Radical Chain Process. European Journal of Organic Chemistry, 2017, 2017, 7231-7237.	2.4	10
24	Regio- and Stereoselective Synthesis of Valuable Tetracyclic Compounds by Intramolecular Diels-Alder Reactions between Furan and Cyclopropene Moieties. European Journal of Organic Chemistry, 2016, 2016, 3603-3610.	2.4	5
25	Triflic Acid-Catalyzed Cycloisomerization Reactions of Donor–Acceptor Cyclopropanes: Access to Alkyl 5-Arylfuran-2-carboxylates. Journal of Organic Chemistry, 2016, 81, 4829-4834.	3.2	18
26	Highly regioselective tandem formal substitution and decarboxylation of 2-acyl-1-chlorocyclopropanecarboxylates with sodium sulfinates. Tetrahedron, 2016, 72, 3436-3442.	1.9	4
27	A straightforward sequence to alkyl 1H-pyrrole-2,5-dicarboxylates starting from acylhydrazono esters and alkyl 2-aroyl-1-chlorocyclopropanecarboxylates. RSC Advances, 2016, 6, 22357-22363.	3.6	10
28	Direct heptafluoroisopropylation of arylboronic acids via hexafluoropropene (HFP). Chemical Communications, 2016, 52, 796-799.	4.1	28
29	Direct Construction of the 9 <i>H</i> â€Pyrrolo[1,2â€ <i>a</i>]azepinâ€9â€amine Skeleton <i>via</i> [4+3] Annulation of Alkyl 2â€Aroylâ€1â€chlorocyclo―propanecarboxylates. Advanced Synthesis and Catalys 2015, 357, 2781-2787.	5 i\$, 3	25
30	Merging Asymmetric Henry Reaction with Organocatalytic Cascade Reaction for the Construction of a Chiral Indolizidine Alkaloid Skeleton. Journal of Organic Chemistry, 2015, 80, 1446-1456.	3.2	18
31	Cycloaddition Reactions of Alkyl Cyclopropenecarboxylates Generated in situ with Nitrones: Construction of Substituted Pyrroles and 1,2â€Oxazinanes. European Journal of Organic Chemistry, 2015, 2015, 1970-1978.	2.4	19
32	Formation and aromatization of strained bicyclic pyrazolidines via tandem reaction of alkyl 2-aroyl-1-chlorocyclopropanecarboxylates with acylhydrazones. Organic and Biomolecular Chemistry, 2015, 13, 8561-8566.	2.8	18
33	Construction of 2-Pyrone Skeleton via Domino Sequence between 2-Acyl-1-Chlorocyclopropanecarboxylate and Amines. Journal of Organic Chemistry, 2015, 80, 490-498.	3.2	41
34	Synthesis of 2,3,3a,4,5,6â€Hexahydrobenzo[b]thiopheneâ€3aâ€carbaldehydes via a Tandem Reaction of Cyclic βâ€Thiocyanatoenals with Electronâ€Deficient Alkenes Triggered by Fluoride. Journal of Heterocyclic Chemistry, 2015, 52, 573-577.	2.6	3
35	Highly Regioselective Cascade Formal Nucleophilic Substitution and Aldol Condensation of 2â€Aroylâ€1â€chlorocyclopropanecarboxylic Esters. European Journal of Organic Chemistry, 2014, 2014, 1942-1950.	2.4	20
36	Synthesis of functionalized fulvenes: [3 + 2] annulation of ethyl α-chlorocyclopropaneformates with 1,3-dicarbonyl compounds. Organic and Biomolecular Chemistry, 2014, 12, 8828-8831.	2.8	23

#	Article	IF	CITATIONS
37	Stereoselective Cascade Formal Nucleophilic Substitution and Mannich Reaction of Ethyl 2-Aroyl-1-chlorocyclopropanecarboxylates. Journal of Organic Chemistry, 2014, 79, 1335-1343.	3.2	21
38	Tandem nucleophilic addition-intramolecular oxa-Michael reaction: Novel synthetic route to trifluoromethylated phthalans. Journal of Fluorine Chemistry, 2013, 149, 125-129.	1.7	14
39	Copperâ€Catalyzed Enantioselective Henry Reaction of Enals and Subsequent Iodocyclization: Stereoselective Construction of Chiral Azatricyclic Frameworks. Angewandte Chemie - International Edition, 2013, 52, 10265-10269.	13.8	30
40	A Twoâ€Step Sequence to Ethyl αâ€Fluorocyclopropanecarboxylates Through MIRC Reaction of Ethyl Dichloroacetate and Highly Regioselective Fluorination. European Journal of Organic Chemistry, 2013, 2013, 7372-7381.	2.4	39
41	Organocatalytic asymmetric Michael addition of ethyl nitroacetate to enones using natural amino acids-derived C1-symmetric chiral primary–secondary diamines. Tetrahedron Letters, 2013, 54, 3011-3014.	1.4	14
42	Asymmetric synthesis of 1,2,3-trisubstituted indanes via an enantioselective copper(II)-catalyzed asymmetric nitroaldol reaction followed by an intramolecular Michael cyclization. Tetrahedron: Asymmetry, 2013, 24, 699-705.	1.8	12
43	Synthesis of Fluorineâ€Containing Multisubstituted Phenanthridines by Rhodiumâ€Catalyzed Alkyne [2+2+2] Cycloaddition and Tandem sp ² CH Difluoromethylenation. Chemistry - A European Journal, 2013, 19, 8294-8299.	3.3	30
44	Rhodiumâ€Catalyzed Intramolecular Difluoromethylenative Dearomatization of Phenols. European Journal of Organic Chemistry, 2013, 2013, 8039-8047.	2.4	31
45	Copperâ€Catalyzed Enantioselective Henry Reaction of Enals and Subsequent Iodocyclization: Stereoselective Construction of Chiral Azatricyclic Frameworks. Angewandte Chemie, 2013, 125, 10455-10459.	2.0	4
46	Direct Vinylogous Aldol Reaction Triggered by Tetrabutylammonium Fluoride: A Highly Regioselective and Diastereoselective Addition of Cyclic β-Haloenals to Aromatic Aldehydes. Synlett, 2012, 23, 468-472.	1.8	7
47	Camphor-derived C1-symmetric chiral diamine organocatalysts for asymmetric Michael addition of nitroalkanes to enones. Organic and Biomolecular Chemistry, 2012, 10, 7618.	2.8	29
48	Rh-catalyzed intramolecular sp2 C–H bond difluoromethylenation. Chemical Communications, 2012, 48, 3136.	4.1	33
49	A highly chemo- and enantioselective nitroaldol reaction of haloenals: preparation of chiral functionalized allylic alcohols. Tetrahedron: Asymmetry, 2012, 23, 124-129.	1.8	17
50	A cascade process for the synthesis of gem-difluoromethylene compounds. Organic and Biomolecular Chemistry, 2011, 9, 3878.	2.8	14
51	Copper(II)-Catalyzed Asymmetric Henry Reaction of <i>o</i> -Alkynylbenzaldehydes Followed by Gold(I)-Mediated Cycloisomerization: An Enantioselective Route to Chiral 1 <i>H</i> -Isochromenes and 1,3-Dihydroisobenzofurans. Journal of Organic Chemistry, 2011, 76, 8869-8878.	3.2	41
52	Enantioselective bioreduction of 2-fluoro-2-alken-1-ols mediated by Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 101-107.	1.8	17
53	Synthesis of <i>C</i> ₁ -Symmetric Chiral Secondary Diamines and Their Applications in the Asymmetric Copper(II)-Catalyzed Henry (Nitroaldol) Reactions. Journal of Organic Chemistry, 2011, 76, 588-600.	3.2	124
54	Selective synthesis of poly-substituted fluorine-containing pyridines and dihydropyrimidines via cascade C–F bond cleavage protocol. Organic and Biomolecular Chemistry, 2011, 9, 5682.	2.8	15

#	Article	IF	CITATIONS
55	Palladiumâ€Catalyzed Synthesis of 2â€Fluoroalkylâ€3â€methyleneâ€3 <i>H</i> â€indoles Through a Domino Carbopalladation/CH Activation Process. Advanced Synthesis and Catalysis, 2011, 353, 325-330.	4.3	24
56	Asymmetric Copper(II) atalysed Nitroaldol (Henry) Reactions Utilizing a Chiral <i>C</i> ₁ ‣ymmetric Dinitrogen Ligand. European Journal of Organic Chemistry, 2011, 2011, 6092-6099.	2.4	38
57	A New Strategy for the Synthesis of Poly-Substituted 3-H, 3-Fluoro, or 3-Trifluoromethyl Pyridines via the Tandem Câ^'F Bond Cleavage Protocol. Organic Letters, 2010, 12, 4376-4379.	4.6	35
58	Prolylprolinol atalyzed Asymmetric Michael Addition of Aliphatic Aldehydes to Nitroalkenes. Advanced Synthesis and Catalysis, 2010, 352, 644-650.	4.3	45
59	Copper(I)â€Catalyzed Synthesis of Novel 4â€(Trifluoromethyl)â€[1,2,3]triazolo[1,5â€ <i>a</i>]quinoxalines <i>via</i> Cascade Reactions of <i>N</i> â€(<i>o</i> â€Haloaryl)alkynylimine with Sodium Azide. Advanced Synthesis and Catalysis, 2010, 352, 1296-1300.	4.3	27
60	A Recyclable Organocascade Reaction System: Stereoselective Precipitation of Optically Active <i>cis</i> ″‣actols with Quaternary Stereocenters during the Michael–Hemiacetalization Reaction. Advanced Synthesis and Catalysis, 2010, 352, 2875-2880.	4.3	14
61	Highly enantioselective bioreduction of 2-fluorocinnamyl alcohols mediated by Saccharomyces cerevisiae. Tetrahedron Letters, 2010, 51, 1693-1695.	1.4	19
62	Organocatalytic Asymmetric Tandem Michael Additionâ^'Hemiacetalization: A Route to Chiral Dihydrocoumarins, Chromanes, and 4H-Chromenes. Journal of Organic Chemistry, 2010, 75, 6900-6907.	3.2	77
63	Palladium catalyzed synthesis of 2-trifluoromethylquinolines through a domino Sonogashira–alkyne carbocyclization process. Chemical Communications, 2010, 46, 2145.	4.1	40
64	Asymmetric synthesis of bicyclic piperidines via <scp>L</scp> â€proline catalyzed aldol reaction of 3â€phthalimidopropanal. Chirality, 2008, 20, 805-811.	2.6	2
65	Pyrrolidine as an efficient organocatalyst for direct aldol reaction of trifluoroacetaldehyde ethyl hemiacetal with ketones. Tetrahedron, 2007, 63, 4636-4641.	1.9	19
66	Highly stereoselective bioreduction and one-way isomerization of 2-alkyl-4,4,4-trichloro-2-butenals. Tetrahedron Letters, 2007, 48, 1895-1898.	1.4	4
67	Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. Journal of Molecular Catalysis B: Enzymatic, 2006, 38, 24-30.	1.8	61
68	A convenient approach to (S)-2-ethylhexan-1-ol mediated by baker's yeast. Tetrahedron Letters, 2005, 46, 7217-7219.	1.4	16
69	BF3-Promoted Aromatic Substitution ofN-Alkylα-Trifluoromethylated Imine: Facile Synthesis of 1-Aryl-2,2,2-trifluoroethylamines. Bulletin of the Chemical Society of Japan, 2002, 75, 2637-2645.	3.2	22
70	Title is missing!. Biotechnology Letters, 2002, 24, 1623-1630.	2.2	6
71	Regioselective Substitution of Phenols with Trifluoroacetaldehyde Ethyl Hemiacetal. Bulletin of the Chemical Society of Japan, 2001, 74, 377-383.	3.2	17
72	Convenient preparation of 1-(indol-3-yl)-2,2,2-trifluoroethylamines via Friedel–Crafts reaction of α-trifluoroacetaldehyde hemiaminal. Journal of Fluorine Chemistry, 2001, 108, 83-86.	1.7	21

#	Article	IF	CITATIONS
73	Convenient substitution of hydroxypyridines with trifluoroacetaldehyde ethyl hemiacetal. Journal of Heterocyclic Chemistry, 2001, 38, 25-28.	2.6	24
74	Substitution of Five-Membered Heteroarenes and Uracils with Trifluoroacetaldehyde Ethyl Hemiacetal. Bulletin of the Chemical Society of Japan, 2000, 73, 249-250.	3.2	12
75	Facile Substitution of N,N-Dimethylanilines and Phenols with Trifluoroacetaldehyde Ethyl Hemiacetal. Synlett, 1999, 1999, 1403-1404.	1.8	16