Volga Bulmus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2367743/publications.pdf

Version: 2024-02-01

69 papers 6,675 citations

71102 41 h-index 65 g-index

71 all docs

71 docs citations

times ranked

71

6669 citing authors

#	Article	IF	CITATIONS
1	A diaminoethane motif bearing low molecular weight polymer as a new nucleic acid delivery agent. Journal of Drug Delivery Science and Technology, 2021, 64, 102551.	3.0	O
2	Efficient synthesis of cRGD functionalized polymers as building blocks of targeted drug delivery systems. European Polymer Journal, 2018, 103, 421-432.	5.4	5
3	Effect of Molecular Architecture on Cell Interactions and Stealth Properties of PEG. Biomacromolecules, 2017, 18, 2699-2710.	5 . 4	34
4	Effect of PEG Grafting Density and Hydrodynamic Volume on Gold Nanoparticle–Cell Interactions: An Investigation on Cell Cycle, Apoptosis, and DNA Damage. Langmuir, 2016, 32, 5997-6009.	3.5	63
5	The endocytic pathway and therapeutic efficiency of doxorubicin conjugated cholesterol-derived polymers. Biomaterials Science, 2015, 3, 323-335.	5 . 4	21
6	pH- and temperature-responsive amphiphilic diblock copolymers of 4-vinylpyridine and oligoethyleneglycol methacrylate synthesized by RAFT polymerization. Polymer, 2014, 55, 525-534.	3.8	32
7	A new proton sponge polymer synthesized by RAFT polymerization for intracellular delivery of biotherapeutics. Polymer Chemistry, 2014, 5, 1593-1604.	3.9	20
8	Assessment of Cholesterol-Derived <i>lonic</i> Copolymers as Potential Vectors for Gene Delivery. Biomacromolecules, 2013, 14, 4135-4149.	5 . 4	7
9	Keto-Functionalized Polymer Scaffolds as Versatile Precursors to Polymer Side-Chain Conjugates. Macromolecules, 2013, 46, 8-14.	4.8	45
10	pH-labile sheddable block copolymers by RAFT polymerization: Synthesis and potential use as siRNA conjugates. European Polymer Journal, 2013, 49, 2895-2905.	5. 4	13
11	Well-Defined Cholesterol Polymers with pH-Controlled Membrane Switching Activity. Biomacromolecules, 2012, 13, 3064-3075.	5 . 4	39
12	Synthesis, self-assembly and stimuli responsive properties of cholesterol conjugated polymers. Polymer Chemistry, 2012, 3, 2057.	3.9	29
13	Insight into Serum Protein Interactions with Functionalized Magnetic Nanoparticles in Biological Media. Langmuir, 2012, 28, 4346-4356.	3.5	59
14	Effects of surface functional groups on the aggregation stability of magnetite nanoparticles in biological media containing serum. , $2011, , .$		2
15	An overview of protein–polymer particles. Soft Matter, 2011, 7, 1599-1614.	2.7	89
16	Synthesis of heterotelechelic polymers with affinity to glutathione-S-transferase and biotin-tagged proteins by RAFT polymerization and thiol–ene reactions. Polymer Chemistry, 2011, 2, 1505.	3.9	23
17	Dicer-Labile PEG Conjugates for siRNA Delivery. Biomacromolecules, 2011, 12, 4301-4310.	5.4	20
18	Doxorubicin conjugated, crosslinked, PEGylated particles prepared via one-pot thiol-ene modification of a homopolymer scaffold: synthesis and in vitro evaluation. Polymer Chemistry, 2011, 2, 385-393.	3.9	34

#	Article	IF	Citations
19	Block Co-polymer Nanoparticles with Degradable Cross-Linked Core and Low-Molecular-Weight PEG Corona for Anti-tumour Drug Delivery. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1001-1022.	3.5	6
20	Stabilization of Magnetic Iron Oxide Nanoparticles in Biological Media by Fetal Bovine Serum (FBS). Langmuir, 2011, 27, 843-850.	3.5	108
21	RAFT polymerization mediated bioconjugation strategies. Polymer Chemistry, 2011, 2, 1463.	3.9	53
22	Thin Multilayer Films and Microcapsules Containing DNA Quadruplex Motifs. Small, 2011, 7, 101-111.	10.0	11
23	Conjugation of siRNA with Combâ€√ype PEG Enhances Serum Stability and Gene Silencing Efficiency. Macromolecular Rapid Communications, 2011, 32, 654-659.	3.9	44
24	A simple methodology for the synthesis of heterotelechelic protein–polymer–biomolecule conjugates. Journal of Polymer Science Part A, 2010, 48, 1399-1405.	2.3	44
25	PEGylated Functional Nanoparticles from a Reactive Homopolymer Scaffold Modified by Thiol Addition Chemistry. Macromolecules, 2010, 43, 5365-5375.	4.8	42
26	The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Materials, 2010, 2, 23-30.	7.9	408
27	In Vitro Cytotoxicity of RAFT Polymers. Biomacromolecules, 2010, 11, 412-420.	5.4	120
28	Anti-fouling magnetic nanoparticles for siRNA delivery. Journal of Materials Chemistry, 2010, 20, 255-265.	6.7	123
29	RAFT Polymer End-Group Modification and Chain Coupling/Conjugation Via Disulfide Bonds. Australian Journal of Chemistry, 2009, 62, 830.	0.9	96
30	Synthesis of siRNA Polyplexes Adopting a Combination of RAFT Polymerization and Thiol-ene Chemistry. Australian Journal of Chemistry, 2009, 62, 1344.	0.9	39
31	Efficient Usage of Thiocarbonates for Both the Production and the Biofunctionalization of Polymers. Macromolecular Rapid Communications, 2009, 30, 493-497.	3.9	159
32	Stabilization of Polymerâ€Hydrogel Capsules via Thiol–Disulfide Exchange. Small, 2009, 5, 2601-2610.	10.0	90
33	Approach to peptide decorated micelles via RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 899-912.	2.3	58
34	Modification of RAFTâ€polymers via thiolâ€ene reactions: A general route to functional polymers and new architectures. Journal of Polymer Science Part A, 2009, 47, 3773-3794.	2.3	225
35	Synthesis of dendritic carbohydrate endâ€functional polymers via RAFT: Versatile multiâ€functional precursors for bioconjugations. Journal of Polymer Science Part A, 2009, 47, 4302-4313.	2.3	72
36	RAFT polymerization and thiol-ene modification of 2-vinyloxyethyl methacrylate: Towards functional branched polymers. Polymer, 2009, 50, 5928-5932.	3.8	40

#	Article	IF	CITATIONS
37	Synthesis of Functionalized and Biodegradable Hyperbranched Polymers from Novel AB ₂ Macromonomers Prepared by RAFT Polymerization. Macromolecules, 2009, 42, 6893-6901.	4.8	41
38	Functional Disulfide-Stabilized Polymerâ^'Protein Particles. Biomacromolecules, 2009, 10, 3253-3258.	5.4	58
39	Bioapplications of RAFT Polymerization. Chemical Reviews, 2009, 109, 5402-5436.	47.7	913
40	The stabilization and bio-functionalization of iron oxide nanoparticles using heterotelechelic polymers. Journal of Materials Chemistry, 2009, 19, 111-123.	6.7	157
41	Stability and utility of pyridyl disulfide functionality in RAFT and conventional radical polymerizations. Journal of Polymer Science Part A, 2008, 46, 7207-7224.	2.3	182
42	Temperature-Responsive Self-Assembled Monolayers of Oligo(ethylene glycol): Control of Biomolecular Recognition. ACS Nano, 2008, 2, 757-765.	14.6	109
43	Synthesis of Versatile Thiol-Reactive Polymer Scaffolds via RAFT Polymerization. Biomacromolecules, 2008, 9, 1934-1944.	5.4	134
44	Acid-Labile Core Cross-Linked Micelles for pH-Triggered Release of Antitumor Drugs. Biomacromolecules, 2008, 9, 1826-1836.	5 . 4	180
45	Reversible siRNA–polymer conjugates by RAFT polymerization. Chemical Communications, 2008, , 3245.	4.1	159
46	An approach to biodegradable star polymeric architectures using disulfide coupling. Chemical Communications, 2008, , 6582.	4.1	62
47	One-Pot Conversion of RAFT-Generated Multifunctional Block Copolymers of HPMA to Doxorubicin Conjugated Acid- and Reductant-Sensitive Crosslinked Micelles. Biomacromolecules, 2008, 9, 3106-3113.	5.4	153
48	Direct Synthesis of Well-Defined Heterotelechelic Polymers for Bioconjugations. Macromolecules, 2008, 41, 5641-5650.	4.8	156
49	Mechanistic analysis of macrophage response to IRAK-1 gene knockdown by a smart polymer-antisense oligonucleotide therapeutic. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1333-1346.	3.5	7
50	Well-Defined Proteinâ^'Polymer Conjugates via in Situ RAFT Polymerization. Journal of the American Chemical Society, 2007, 129, 7145-7154.	13.7	392
51	Inâ€Situ Formation of Protein–Polymer Conjugates through Reversible Addition Fragmentation Chain Transfer Polymerization. Angewandte Chemie - International Edition, 2007, 46, 3099-3103.	13.8	207
52	Direct Synthesis of Pyridyl Disulfide-Terminated Polymers by RAFT Polymerization. Macromolecular Rapid Communications, 2007, 28, 305-314.	3.9	104
53	Back Cover: Macromol. Rapid Commun. 3/2007. Macromolecular Rapid Communications, 2007, 28, 356-356.	3.9	0
54	Synthesis and Characterization of Degradable p(HEMA) Microgels: Use of Acid-Labile Crosslinkers. Macromolecular Bioscience, 2007, 7, 446-455.	4.1	86

#	Article	IF	Citations
55	Macromol. Biosci. 4/2007. Macromolecular Bioscience, 2007, 7, 528-528.	4.1	0
56	Acid-cleavable polymeric core–shell particles for delivery of hydrophobic drugs. Journal of Controlled Release, 2006, 115, 197-207.	9.9	90
57	Biomembrane-Active Molecular Switches as Tools for Intracellular Drug Delivery. ChemInform, 2005, 36, no.	0.0	0
58	Biomembrane-Active Molecular Switches as Tools for Intracellular Drug Delivery. Australian Journal of Chemistry, 2005, 58, 411.	0.9	25
59	Antibiotic Treatment in a Murine Model of Sepsis: Impact on Cytokines and Endotoxin Release. Shock, 2004, 21, 115-120.	2.1	86
60	A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. Journal of Controlled Release, 2003, 93, 105-120.	9.9	240
61	Conjugates of poly(N-isopropyl acrylamide-co-acrylic acid) with alanine monopeptide, dipeptide, and tripeptide. Journal of Applied Polymer Science, 2003, 88, 2012-2019.	2.6	17
62	Imaging of Poly(N-Isopropyl Acrylamide-Co-Acrylic Acid)–Amino Acid Conjugates with Scanning Tunnelling Microscopy. Journal of Bioactive and Compatible Polymers, 2002, 17, 239-250.	2.1	2
63	Stimuli-responsive properties of conjugates of N-isopropylacrylamide-co-acrylic acid oligomers with alanine, glycine and serine mono-, di- and tri-peptides. Journal of Controlled Release, 2001, 76, 265-274.	9.9	40
64	Photon transmission method for studying film formation from polstyrene latexes with different molecular weights. Journal of Applied Polymer Science, 2000, 77, 866-874.	2.6	26
65	Really smart bioconjugates of smart polymers and receptor proteins. Journal of Biomedical Materials Research Part B, 2000, 52, 577-586.	3.1	301
66	Site-Specific Polymerâ^'Streptavidin Bioconjugate for pH-Controlled Binding and Triggered Release of Biotin. Bioconjugate Chemistry, 2000, 11, 78-83.	3.6	190
67	Smart and biofunctional streptavidin. New Biotechnology, 1999, 16, 93-99.	2.7	18
68	Modified PMMA monosize microbeads for glucose oxidase immobilization. Chemical Engineering Journal, 1997, 65, 71-76.	12.7	81
69	Production of polymethylmethacrylate particles by dispersion polymerization in aqueous media with ceric ammonium nitrate. Journal of Applied Polymer Science, 1996, 60, 697-704.	2.6	22