
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2367743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioapplications of RAFT Polymerization. Chemical Reviews, 2009, 109, 5402-5436.	23.0	913
2	The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Materials, 2010, 2, 23-30.	3.8	408
3	Well-Defined Proteinâ `Polymer Conjugates via in Situ RAFT Polymerization. Journal of the American Chemical Society, 2007, 129, 7145-7154.	6.6	392
4	Really smart bioconjugates of smart polymers and receptor proteins. Journal of Biomedical Materials Research Part B, 2000, 52, 577-586.	3.0	301
5	A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. Journal of Controlled Release, 2003, 93, 105-120.	4.8	240
6	Modification of RAFTâ€polymers via thiolâ€ene reactions: A general route to functional polymers and new architectures. Journal of Polymer Science Part A, 2009, 47, 3773-3794.	2.5	225
7	Inâ€Situ Formation of Protein–Polymer Conjugates through Reversible Addition Fragmentation Chain Transfer Polymerization. Angewandte Chemie - International Edition, 2007, 46, 3099-3103.	7.2	207
8	Site-Specific Polymerâ^'Streptavidin Bioconjugate for pH-Controlled Binding and Triggered Release of Biotin. Bioconjugate Chemistry, 2000, 11, 78-83.	1.8	190
9	Stability and utility of pyridyl disulfide functionality in RAFT and conventional radical polymerizations. Journal of Polymer Science Part A, 2008, 46, 7207-7224.	2.5	182
10	Acid-Labile Core Cross-Linked Micelles for pH-Triggered Release of Antitumor Drugs. Biomacromolecules, 2008, 9, 1826-1836.	2.6	180
11	Reversible siRNA–polymer conjugates by RAFT polymerization. Chemical Communications, 2008, , 3245.	2.2	159
12	Efficient Usage of Thiocarbonates for Both the Production and the Biofunctionalization of Polymers. Macromolecular Rapid Communications, 2009, 30, 493-497.	2.0	159
13	The stabilization and bio-functionalization of iron oxide nanoparticles using heterotelechelic polymers. Journal of Materials Chemistry, 2009, 19, 111-123.	6.7	157
14	Direct Synthesis of Well-Defined Heterotelechelic Polymers for Bioconjugations. Macromolecules, 2008, 41, 5641-5650.	2.2	156
15	One-Pot Conversion of RAFT-Generated Multifunctional Block Copolymers of HPMA to Doxorubicin Conjugated Acid- and Reductant-Sensitive Crosslinked Micelles. Biomacromolecules, 2008, 9, 3106-3113.	2.6	153
16	Synthesis of Versatile Thiol-Reactive Polymer Scaffolds via RAFT Polymerization. Biomacromolecules, 2008, 9, 1934-1944.	2.6	134
17	Anti-fouling magnetic nanoparticles for siRNA delivery. Journal of Materials Chemistry, 2010, 20, 255-265.	6.7	123
18	In Vitro Cytotoxicity of RAFT Polymers. Biomacromolecules, 2010, 11, 412-420.	2.6	120

#	Article	IF	CITATIONS
19	Temperature-Responsive Self-Assembled Monolayers of Oligo(ethylene glycol): Control of Biomolecular Recognition. ACS Nano, 2008, 2, 757-765.	7.3	109
20	Stabilization of Magnetic Iron Oxide Nanoparticles in Biological Media by Fetal Bovine Serum (FBS). Langmuir, 2011, 27, 843-850.	1.6	108
21	Direct Synthesis of Pyridyl Disulfide-Terminated Polymers by RAFT Polymerization. Macromolecular Rapid Communications, 2007, 28, 305-314.	2.0	104
22	RAFT Polymer End-Group Modification and Chain Coupling/Conjugation Via Disulfide Bonds. Australian Journal of Chemistry, 2009, 62, 830.	0.5	96
23	Acid-cleavable polymeric core–shell particles for delivery of hydrophobic drugs. Journal of Controlled Release, 2006, 115, 197-207.	4.8	90
24	Stabilization of Polymerâ€Hydrogel Capsules via Thiol–Disulfide Exchange. Small, 2009, 5, 2601-2610.	5.2	90
25	An overview of protein–polymer particles. Soft Matter, 2011, 7, 1599-1614.	1.2	89
26	Antibiotic Treatment in a Murine Model of Sepsis: Impact on Cytokines and Endotoxin Release. Shock, 2004, 21, 115-120.	1.0	86
27	Synthesis and Characterization of Degradable p(HEMA) Microgels: Use of Acid-Labile Crosslinkers. Macromolecular Bioscience, 2007, 7, 446-455.	2.1	86
28	Modified PMMA monosize microbeads for glucose oxidase immobilization. Chemical Engineering Journal, 1997, 65, 71-76.	6.6	81
29	Synthesis of dendritic carbohydrate endâ€functional polymers via RAFT: Versatile multiâ€functional precursors for bioconjugations. Journal of Polymer Science Part A, 2009, 47, 4302-4313.	2.5	72
30	Effect of PEG Grafting Density and Hydrodynamic Volume on Gold Nanoparticle–Cell Interactions: An Investigation on Cell Cycle, Apoptosis, and DNA Damage. Langmuir, 2016, 32, 5997-6009.	1.6	63
31	An approach to biodegradable star polymeric architectures using disulfide coupling. Chemical Communications, 2008, , 6582.	2.2	62
32	Insight into Serum Protein Interactions with Functionalized Magnetic Nanoparticles in Biological Media. Langmuir, 2012, 28, 4346-4356.	1.6	59
33	Approach to peptide decorated micelles via RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 899-912.	2.5	58
34	Functional Disulfide-Stabilized Polymerâ^'Protein Particles. Biomacromolecules, 2009, 10, 3253-3258.	2.6	58
35	RAFT polymerization mediated bioconjugation strategies. Polymer Chemistry, 2011, 2, 1463.	1.9	53
36	Keto-Functionalized Polymer Scaffolds as Versatile Precursors to Polymer Side-Chain Conjugates. Macromolecules, 2013, 46, 8-14.	2.2	45

#	Article	IF	CITATIONS
37	A simple methodology for the synthesis of heterotelechelic protein–polymer–biomolecule conjugates. Journal of Polymer Science Part A, 2010, 48, 1399-1405.	2.5	44
38	Conjugation of siRNA with Combâ€Type PEG Enhances Serum Stability and Gene Silencing Efficiency. Macromolecular Rapid Communications, 2011, 32, 654-659.	2.0	44
39	PEGylated Functional Nanoparticles from a Reactive Homopolymer Scaffold Modified by Thiol Addition Chemistry. Macromolecules, 2010, 43, 5365-5375.	2.2	42
40	Synthesis of Functionalized and Biodegradable Hyperbranched Polymers from Novel AB ₂ Macromonomers Prepared by RAFT Polymerization. Macromolecules, 2009, 42, 6893-6901.	2.2	41
41	Stimuli-responsive properties of conjugates of N-isopropylacrylamide-co-acrylic acid oligomers with alanine, glycine and serine mono-, di- and tri-peptides. Journal of Controlled Release, 2001, 76, 265-274.	4.8	40
42	RAFT polymerization and thiol-ene modification of 2-vinyloxyethyl methacrylate: Towards functional branched polymers. Polymer, 2009, 50, 5928-5932.	1.8	40
43	Synthesis of siRNA Polyplexes Adopting a Combination of RAFT Polymerization and Thiol-ene Chemistry. Australian Journal of Chemistry, 2009, 62, 1344.	0.5	39
44	Well-Defined Cholesterol Polymers with pH-Controlled Membrane Switching Activity. Biomacromolecules, 2012, 13, 3064-3075.	2.6	39
45	Doxorubicin conjugated, crosslinked, PEGylated particles prepared via one-pot thiol-ene modification of a homopolymer scaffold: synthesis and in vitro evaluation. Polymer Chemistry, 2011, 2, 385-393.	1.9	34
46	Effect of Molecular Architecture on Cell Interactions and Stealth Properties of PEG. Biomacromolecules, 2017, 18, 2699-2710.	2.6	34
47	pH- and temperature-responsive amphiphilic diblock copolymers of 4-vinylpyridine and oligoethyleneglycol methacrylate synthesized by RAFT polymerization. Polymer, 2014, 55, 525-534.	1.8	32
48	Synthesis, self-assembly and stimuli responsive properties of cholesterol conjugated polymers. Polymer Chemistry, 2012, 3, 2057.	1.9	29
49	Photon transmission method for studying film formation from polstyrene latexes with different molecular weights. Journal of Applied Polymer Science, 2000, 77, 866-874.	1.3	26
50	Biomembrane-Active Molecular Switches as Tools for Intracellular Drug Delivery. Australian Journal of Chemistry, 2005, 58, 411.	0.5	25
51	Synthesis of heterotelechelic polymers with affinity to glutathione-S-transferase and biotin-tagged proteins by RAFT polymerization and thiol–ene reactions. Polymer Chemistry, 2011, 2, 1505.	1.9	23
52	Production of polymethylmethacrylate particles by dispersion polymerization in aqueous media with ceric ammonium nitrate. Journal of Applied Polymer Science, 1996, 60, 697-704.	1.3	22
53	The endocytic pathway and therapeutic efficiency of doxorubicin conjugated cholesterol-derived polymers. Biomaterials Science, 2015, 3, 323-335.	2.6	21
54	Dicer-Labile PEG Conjugates for siRNA Delivery. Biomacromolecules, 2011, 12, 4301-4310.	2.6	20

#	Article	IF	CITATIONS
55	A new proton sponge polymer synthesized by RAFT polymerization for intracellular delivery of biotherapeutics. Polymer Chemistry, 2014, 5, 1593-1604.	1.9	20
56	Smart and biofunctional streptavidin. New Biotechnology, 1999, 16, 93-99.	2.7	18
57	Conjugates of poly(N-isopropyl acrylamide-co-acrylic acid) with alanine monopeptide, dipeptide, and tripeptide. Journal of Applied Polymer Science, 2003, 88, 2012-2019.	1.3	17
58	pH-labile sheddable block copolymers by RAFT polymerization: Synthesis and potential use as siRNA conjugates. European Polymer Journal, 2013, 49, 2895-2905.	2.6	13
59	Thin Multilayer Films and Microcapsules Containing DNA Quadruplex Motifs. Small, 2011, 7, 101-111.	5.2	11
60	Mechanistic analysis of macrophage response to IRAK-1 gene knockdown by a smart polymer-antisense oligonucleotide therapeutic. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1333-1346.	1.9	7
61	Assessment of Cholesterol-Derived <i>Ionic</i> Copolymers as Potential Vectors for Gene Delivery. Biomacromolecules, 2013, 14, 4135-4149.	2.6	7
62	Block Co-polymer Nanoparticles with Degradable Cross-Linked Core and Low-Molecular-Weight PEG Corona for Anti-tumour Drug Delivery. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1001-1022.	1.9	6
63	Efficient synthesis of cRGD functionalized polymers as building blocks of targeted drug delivery systems. European Polymer Journal, 2018, 103, 421-432.	2.6	5
64	Imaging of Poly(N-Isopropyl Acrylamide-Co-Acrylic Acid)–Amino Acid Conjugates with Scanning Tunnelling Microscopy. Journal of Bioactive and Compatible Polymers, 2002, 17, 239-250.	0.8	2
65	Effects of surface functional groups on the aggregation stability of magnetite nanoparticles in biological media containing serum. , 2011, , .		2
66	Biomembrane-Active Molecular Switches as Tools for Intracellular Drug Delivery. ChemInform, 2005, 36, no.	0.1	0
67	Back Cover: Macromol. Rapid Commun. 3/2007. Macromolecular Rapid Communications, 2007, 28, 356-356.	2.0	0
68	Macromol. Biosci. 4/2007. Macromolecular Bioscience, 2007, 7, 528-528.	2.1	0
69	A diaminoethane motif bearing low molecular weight polymer as a new nucleic acid delivery agent. Journal of Drug Delivery Science and Technology, 2021, 64, 102551.	1.4	Ο