Qian Sun å-ĕ[™]±

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/236757/publications.pdf Version: 2024-02-01

ΟιλΝ SUN ÅJΜέ'+

#	Article	IF	CITATIONS
1	Identification of Semi-ON-State Current Collapse in AlGaN/GaN HEMTs by Drain Current Deep Level Transient Spectroscopy. IEEE Electron Device Letters, 2022, 43, 200-203.	2.2	11
2	GaN-based distributed feedback laser diodes grown on Si. Journal Physics D: Applied Physics, 2022, 55, 195103.	1.3	2
3	Electrically injected GaN-on-Si blue microdisk laser diodes. Optics Express, 2022, 30, 13039.	1.7	5
4	GaN-Based Resonant-Cavity Light-Emitting Diodes Grown on Si. Nanomaterials, 2022, 12, 134.	1.9	3
5	A review on the GaN-on-Si power electronic devices. Fundamental Research, 2022, 2, 462-475.	1.6	54
6	Improved minority carrier lifetime in p-type GaN by suppressing the non-radiative recombination process. Applied Physics Express, 2022, 15, 075501.	1.1	5
7	Influence of Mg doping level at the initial growth stage on the gate reliability of p-GaN gate HEMTs. Journal Physics D: Applied Physics, 2022, 55, 355103.	1.3	3
8	An Enhancement-Mode GaN p-FET With Improved Breakdown Voltage. IEEE Electron Device Letters, 2022, 43, 1191-1194.	2.2	14
9	Gate Reliability and its Degradation Mechanism in the Normally OFF High-Electron-Mobility Transistors With Regrown p-GaN Gate. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3715-3724.	3.7	8
10	Interface Charge Effects on 2-D Electron Gas in Vertical-Scaled Ultrathin-Barrier AlGaN/GaN Heterostructure. IEEE Transactions on Electron Devices, 2021, 68, 36-41.	1.6	9
11	An ultrathin-barrier AlGaN/GaN heterostructure: a recess-free technology for the fabrication and integration of GaN-based power devices and power-driven circuits. Semiconductor Science and Technology, 2021, 36, 044002.	1.0	6
12	High-Voltage and High-I _{ON} /I _{OFF} Quasi-Vertical GaN-on-Si Schottky Barrier Diode With Argon-Implanted Termination. IEEE Electron Device Letters, 2021, 42, 473-476.	2.2	37
13	Transfer-printed, tandem microscale light-emitting diodes for full-color displays. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
14	Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation*. Chinese Physics B, 2021, 30, 056104.	0.7	1
15	Activation of buried p-GaN through nanopipes in large-size GaN-based tunnel junction LEDs. Nanotechnology, 2021, 32, 30LT01.	1.3	4
16	III-nitride semiconductor lasers grown on Si. Progress in Quantum Electronics, 2021, 77, 100323.	3.5	38
17	Reverse leakage and breakdown mechanisms of vertical GaN-on-Si Schottky barrier diodes with and without implanted termination. Applied Physics Letters, 2021, 118,	1.5	26
18	Influence of the carrier behaviors in p-GaN gate on the threshold voltage instability in the normally off high electron mobility transistor. Applied Physics Letters, 2021, 119, .	1.5	14

#	Article	IF	CITATIONS
19	Influence of traps on the gate reverse characteristics of normally-off high-electron-mobility transistors with regrown p-GaN gate. Applied Physics Express, 2021, 14, 104005.	1.1	3
20	Effect of Si Doping on the Performance of GaN Schottky Barrier Ultraviolet Photodetector Grown on Si Substrate. Photonics, 2021, 8, 28.	0.9	6
21	Nitrogen-Implanted Guard Rings for 600-V Quasi-Vertical GaN-on-Si Schottky Barrier Diodes With a BFOM of 0.26 GW/cm ² . IEEE Transactions on Electron Devices, 2021, 68, 5682-5686.	1.6	24
22	Narrow-Linewidth GaN-on-Si Laser Diode with Slot Gratings. Nanomaterials, 2021, 11, 3092.	1.9	2
23	Crack-free high quality 2 μ4m-thick Al _{0.5} Ga _{0.5} N grown on a Si substrate with a superlattice transition layer. CrystEngComm, 2020, 22, 1160-1165.	1.3	14
24	InGaN-Based Lasers with an Inverted Ridge Waveguide Heterogeneously Integrated on Si(100). ACS Photonics, 2020, 7, 2636-2642.	3.2	8
25	Degradation study of InGaN-based laser diodes grown on Si. Journal Physics D: Applied Physics, 2020, 53, 395103.	1.3	5
26	Self-terminated Gate Recessing with a Low Density of Interface States and High Uniformity for Enhancement-mode GaN HEMTs. , 2020, , .		3
27	A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsystems and Nanoengineering, 2020, 6, 64.	3.4	57
28	Effect of surface stoichiometry on the non-alloyed ohmic contact to N-face n-GaN. Solid-State Electronics, 2020, 171, 107863.	0.8	6
29	Thermal characterization of electrically injected GaN-based microdisk lasers on Si. Applied Physics Express, 2020, 13, 074002.	1.1	9
30	A pâ€GaNâ€Gated Hybrid Anode Lateral Diode with a Thicker AlGaN Barrier Layer. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900781.	0.8	6
31	Determination of carbon-related trap energy level in (Al)GaN buffers for high electron mobility transistors through a room-temperature approach. Applied Physics Letters, 2020, 117, .	1.5	18
32	AlGaN-based Schottky barrier deep ultraviolet photodetector grown on Si substrate. Optics Express, 2020, 28, 17188.	1.7	26
33	Continuous-wave electrically injected GaN-on-Si microdisk laser diodes. Optics Express, 2020, 28, 12201.	1.7	16
34	Enhanced carrier confinement and radiative recombination in GaN-based lasers by tailoring first-barrier doping. Optics Express, 2020, 28, 32124.	1.7	9
35	Improving the Current Spreading by Locally Modulating the Doping Type in the n-AlGaN Layer for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes. Nanoscale Research Letters, 2019, 14, 268.	3.1	6
36	Revealing the Positive Bias Temperature Instability in Normally-OFF AlGaN/GaN MIS-HFETs by		3

Constant-Capacitance DLTS. , 2019, , .

#	Article	IF	CITATIONS
37	Normally-off HEMTs With Regrown p-GaN Gate and Low-Pressure Chemical Vapor Deposition SiN _x Passivation by Using an AlN Pre-Layer. IEEE Electron Device Letters, 2019, 40, 1495-1498.	2.2	50
38	InGaN-Based Quantum Well Superluminescent Diode Monolithically Grown on Si. ACS Photonics, 2019, 6, 2104-2109.	3.2	10
39	Wafer-scale crack-free 10 <i>µ</i> m-thick GaN with a dislocation density of 5.8  ×  10 ^{ cm^{â^'2} grown on Si. Journal Physics D: Applied Physics, 2019, 52, 425102.}	•7< <i> </i> sup> 1.3	19
40	Capture and emission mechanisms of defect states at interface between nitride semiconductor and gate oxides in GaN-based metal-oxide-semiconductor power transistors. Journal of Applied Physics, 2019, 126, .	1.1	24
41	Fabrication of AlGaN nanostructures by nanolithography on ultraviolet LEDs grown on Si substrates. Nanotechnology, 2019, 30, 185201.	1.3	5
42	Effect of Thermal Cleaning Prior to p-GaN Gate Regrowth for Normally Off High-Electron-Mobility Transistors. ACS Applied Materials & amp; Interfaces, 2019, 11, 21982-21987.	4.0	22
43	A fixed cytometer chip for identification of cell populations and real-time monitoring of single-cell apoptosis under gradient UV radiation. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	1
44	The abnormal aging phenomena in GaN-based near-ultraviolet laser diodes. Journal Physics D: Applied Physics, 2019, 52, 275104.	1.3	2
45	Recovery of p-GaN surface damage induced by dry etching for the formation of p-type Ohmic contact. Applied Physics Express, 2019, 12, 055507.	1.1	22
46	Accurate surface band bending determination on Ga-polar <i>n</i> -type GaN films by fitting x-ray valence band photoemission spectrum. AlP Advances, 2019, 9, .	0.6	9
47	Evidence of a strong perpendicular magnetic anisotropy in Au/Co/MgO/GaN heterostructures. Nanoscale Advances, 2019, 1, 4466-4475.	2.2	5
48	GaN LEDs on Si Substrate. Solid State Lighting Technology and Application Series, 2019, , 133-170.	0.3	9
49	Monolithic integration of E/D-mode GaN MIS-HEMTs on ultrathin-barrier AlGaN/GaN heterostructure on Si substrates. Applied Physics Express, 2019, 12, 024001.	1.1	21
50	Performance improvement of InGaN-based laser grown on Si by suppressing point defects. Optics Express, 2019, 27, 25943.	1.7	12
51	GaN-based ultraviolet microdisk laser diode grown on Si. Photonics Research, 2019, 7, B32.	3.4	25
52	Ultrathin-Barrier AlGaN/GaN Heterostructure: A Recess-Free Technology for Manufacturing High-Performance GaN-on-Si Power Devices. IEEE Transactions on Electron Devices, 2018, 65, 207-214.	1.6	87
53	Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si. ACS Photonics, 2018, 5, 699-704.	3.2	37
54	Light output improvement of GaN-based light-emitting diodes grown on Si (111) by a via-thin-film structure. Journal of Semiconductors, 2018, 39, 044002.	2.0	10

#	Article	IF	CITATIONS
55	On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-5.	1.9	55
56	High \${f}_{{T}}\$ AlGa(In)N/GaN HEMTs Grown on Si With a Low Gate Leakage and a High ON/OFF Current Ratio. IEEE Electron Device Letters, 2018, 39, 576-579.	2.2	23
57	Unintentional incorporation of Ga in the nominal AIN spacer of AlInGaN/AIN/GaN Heterostructure. Journal Physics D: Applied Physics, 2018, 51, 035102.	1.3	7
58	On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si. Scientific Reports, 2018, 8, 7922.	1.6	44
59	Room-temperature electrically pumped InGaN-based microdisk laser grown on Si. Optics Express, 2018, 26, 5043.	1.7	29
60	Catalytic growth of highly crystalline polyaniline by copper under ambient conditions. CrystEngComm, 2018, 20, 5119-5122.	1.3	5
61	Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light: Science and Applications, 2018, 7, 13.	7.7	101
62	Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si. Journal of Nanophotonics, 2018, 12, 1.	0.4	4
63	Thermal degradation of InGaN/GaN quantum wells in blue laser diode structure during the epitaxial growth. Proceedings of SPIE, 2017, , .	0.8	6
64	Efficiency improvement of GaN-on-silicon thin-film light-emitting diodes with optimized via-like n-electrodes. Semiconductor Science and Technology, 2017, 32, 075009.	1.0	7
65	Mechanism of leakage of ion-implantation isolated AlGaN/GaN MIS-high electron mobility transistors on Si substrate. Solid-State Electronics, 2017, 134, 39-45.	0.8	4
66	A 30 Mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit. Semiconductor Science and Technology, 2017, 32, 075002.	1.0	9
67	Self-terminated etching of GaN with a high selectivity over AlGaN under inductively coupled Cl 2 /N 2 /O 2 plasma with a low-energy ion bombardment. Applied Surface Science, 2017, 420, 817-824.	3.1	30
68	Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics. Applied Physics Express, 2017, 10, 012101.	1.1	8
69	p-GaN Gate Enhancement-Mode HEMT Through a High Tolerance Self-Terminated Etching Process. IEEE Journal of the Electron Devices Society, 2017, 5, 340-346.	1.2	43
70	High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111). Applied Physics Express, 2017, 10, 072101.	1.1	21
71	<i>a</i> -Axis GaN/AlN/AlGaN Core–Shell Heterojunction Microwires as Normally Off High Electron Mobility Transistors. ACS Applied Materials & Interfaces, 2017, 9, 41435-41442.	4.0	14
72	UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections. Optics Letters, 2017, 42, 4533.	1.7	29

#	Article	IF	CITATIONS
73	A Study of Efficiency Droop Phenomenon in GaN-Based Laser Diodes before Lasing. Materials, 2017, 10, 482.	1.3	7
74	Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 047801.	0.2	0
75	Effects of Thickness of a Low-Temperature Buffer and Impurity Incorporation on the Characteristics of Nitrogen-polar GaN. Nanoscale Research Letters, 2016, 11, 509.	3.1	5
76	AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation. Applied Physics Letters, 2016, 108, .	1.5	7
77	Investigation of InGaN/GaN laser degradation based on luminescence properties. Journal of Applied Physics, 2016, 119, .	1.1	14
78	Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111). AlP Advances, 2016, 6, .	0.6	21
79	Fabrication of normally-off AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors by photo-electrochemical gate recess etching in ionic liquid. Applied Physics Express, 2016, 9, 084102.	1.1	19
80	GaN-on-Si blue/white LEDs: epitaxy, chip, and package. Journal of Semiconductors, 2016, 37, 044006.	2.0	66
81	Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nature Photonics, 2016, 10, 595-599.	15.6	191
82	High Uniformity Normally-OFF GaN MIS-HEMTs Fabricated on Ultra-Thin-Barrier AlGaN/GaN Heterostructure. IEEE Electron Device Letters, 2016, 37, 1617-1620.	2.2	72
83	Studies on High-Voltage GaN-on-Si MIS-HEMTs Using LPCVD Si ₃ N ₄ as Gate Dielectric and Passivation Layer. IEEE Transactions on Electron Devices, 2016, 63, 731-738.	1.6	96
84	Normally OFF GaN-on-Si MIS-HEMTs Fabricated With LPCVD-SiN _{<i>x</i>} Passivation and High-Temperature Gate Recess. IEEE Transactions on Electron Devices, 2016, 63, 614-619.	1.6	87
85	Properties of AlN film grown on Si (111). Journal of Crystal Growth, 2016, 435, 76-83.	0.7	18
86	Effects of thickness on optical characteristics and strain distribution of thin-film GaN light-emitting diodes transferred to Si substrates. Applied Physics Express, 2016, 9, 042101.	1.1	5
87	Stress evolution in AlN and GaN grown on Si(111): experiments and theoretical modeling. Journal of Materials Science: Materials in Electronics, 2016, 27, 2004-2013.	1.1	13
88	Strain relaxation and dislocation reduction in AlGaN stepâ€graded buffer for crackâ€free GaN on Si (111). Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 437-441.	0.8	56
89	High efficient GaN-based laser diodes with tunnel junction. Applied Physics Letters, 2013, 103, 043508.	1.5	20
90	Performance Enhancement of GaN-Based Laser Diodes With Prestrained Growth. IEEE Photonics Technology Letters, 2013, 25, 2401-2404.	1.3	0

#	Article	IF	CITATIONS
91	Preparation of GaN-on-Si based thin-film flip-chip LEDs. Journal of Semiconductors, 2013, 34, 053006.	2.0	4
92	Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films. ACS Applied Materials & Interfaces, 2013, 5, 11074-11079.	4.0	45
93	Cost-effective solid state lighting based on GaN-on-Si technology. , 2013, , .		Ο
94	Effects of matrix layer composition on the structural and optical properties of self-organized InGaN quantum dots. Journal of Applied Physics, 2013, 114, .	1.1	14
95	The Role of Growth-Pressure on the Determination of Anisotropy Properties in Nonpolarm-Plane GaN. ECS Journal of Solid State Science and Technology, 2012, 1, R50-R53.	0.9	4
96	Optical emission characteristics of semipolar (1,1,ar{2},2) GaN light-emitting diodes grown on m-sapphire and stripe-etched <i>r</i> -sapphire. Semiconductor Science and Technology, 2012, 27, 024016.	1.0	11
97	Classification of stacking faults and dislocations observed in nonpolar a-plane GaN epilayers using transmission electron microscopy. Applied Surface Science, 2012, 258, 2522-2528.	3.1	29
98	Growth evolution and microstructural characterization of semipolar (112Ì,,2) GaN selectively grown on etched r-plane sapphire. Journal of Crystal Growth, 2012, 341, 27-33.	0.7	19
99	Using the kinetic Wulff plot to design and control nonpolar and semipolar GaN heteroepitaxy. Semiconductor Science and Technology, 2012, 27, 024005.	1.0	67
100	Heteroepitaxy of Nonpolar and Semipolar GaN. Springer Series in Materials Science, 2012, , 1-27.	0.4	8
101	Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A case study with GaN. Journal of Applied Physics, 2011, 110, .	1.1	85
102	Surface striation, anisotropic in-plane strain, and degree of polarization in nonpolar m-plane GaN grown on SiC. Journal Physics D: Applied Physics, 2011, 44, 375103.	1.3	11
103	Optical Characterization of Semipolar GaN Light-Emitting Diodes on Sapphire. , 2011, , .		0
104	Growth of cubic InN on GaP(1 0 0) with GaN buffer by metalorganic chemical vapour deposition. Journal Physics D: Applied Physics, 2011, 44, 285403.	1.3	1
105	Role of nonradiative recombination centers and extended defects in nonpolar GaN on light emission efficiency. Applied Physics Letters, 2011, 98, .	1.5	32
106	The fabrication of large-area, free-standing GaN by a novel nanoetching process. Nanotechnology, 2011, 22, 045603.	1.3	56
107	Electrical and luminescent properties and deep traps spectra of N-polar GaN films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 83-88.	1.7	10
108	Electrical properties and deep traps spectra of a-plane GaN films grown on r-plane sapphire. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 220-224.	1.7	24

#	Article	IF	CITATIONS
109	A conductivity-based selective etching for next generation GaN devices. Physica Status Solidi (B): Basic Research, 2010, 247, 1713-1716.	0.7	84
110	Nonpolar and semipolar GaN heteroepitaxy on sapphire for LED application. , 2010, , .		3
111	a-plane GaN hydride vapor phase epitaxy on a-plane GaN templates with and without use of TiN intermediate layers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1039-1043.	0.6	1
112	Surface and interface states of gallium-polar versus nitrogen-polar GaN: Impact of thin organic semiconductor overlayers. Journal of Applied Physics, 2010, 107, .	1.1	16
113	Effect of gate orientation on dc characteristics of Si-doped, nonpolar AlGaN/GaN metal-oxide semiconductor high electron mobility transistors. Applied Physics Letters, 2009, 95, 082110.	1.5	11
114	Improving microstructural quality of semipolar (112̱2) GaN on m-plane sapphire by a two-step growth process. Applied Physics Letters, 2009, 95, .	1.5	72
115	Improved hydrogen detection sensitivity in N-polar GaN Schottky diodes. Applied Physics Letters, 2009, 94, 212108.	1.5	51
116	High Sensitivity of Hydrogen Sensing Through N-polar GaN Schottky Diodes. Materials Research Society Symposia Proceedings, 2009, 1202, 178.	0.1	0
117	Effect of Controlled Growth Dynamics on the Microstructure of Nonpolara-Plane GaN Revealed by X-ray Diffraction. Japanese Journal of Applied Physics, 2009, 48, 071002.	0.8	37
118	Morphological and microstructural evolution in the two-step growth of nonpolar a-plane GaN on r-plane sapphire. Journal of Applied Physics, 2009, 106, .	1.1	74
119	Nitride-organic hybrid heterostructures for possible novel optoelectronic devices: charge injection and transport. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 593-595.	0.8	7
120	Hydrogen sensing of N-polar and Ga-polar GaN Schottky diodes. Sensors and Actuators B: Chemical, 2009, 142, 175-178.	4.0	20
121	N-face GaN growth on c-plane sapphire by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2009, 311, 2948-2952.	0.7	51
122	Effect of NH3 flow rate on m-plane GaN growth on m-plane SiC by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2009, 311, 3824-3829.	0.7	16
123	Microstructural evolution in m-plane GaN growth on m-plane SiC. Applied Physics Letters, 2008, 92, 051112.	1.5	30
124	Nitrogen-polar GaN growth evolution on c-plane sapphire. Applied Physics Letters, 2008, 93, .	1.5	67
125	Understanding nonpolar GaN growth through kinetic Wulff plots. Journal of Applied Physics, 2008, 104, .	1.1	98
126	High-temperature AlN interlayer for crack-free AlGaN growth on GaN. Journal of Applied Physics, 2008, 104, 043516.	1.1	11

#	Article	IF	CITATIONS
127	Reduction of stacking fault density in m-plane GaN grown on SiC. Applied Physics Letters, 2008, 93, .	1.5	55
128	Nitride/organic hybrid heterostructures for photodetector devices. , 2008, , .		0
129	Observation of oxide precipitates in InN nanostructures. Applied Physics Letters, 2007, 91, .	1.5	6
130	Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Applied Physics Letters, 2007, 91, 051116.	1.5	79
131	UV LED arrays at 280 and 340 nm for spectroscopic biosensing. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2112-2116.	0.8	13
132	Depth dependence of structural quality in InN grown by metalorganic chemical vapor deposition. Materials Letters, 2007, 61, 516-519.	1.3	3
133	Effects of grain size on the mosaic tilt and twist in InN films grown on GaN by metal-organic chemical vapor deposition. Applied Physics Letters, 2006, 89, 092114.	1.5	12
134	Influence of cracks generation on the structural and optical properties of GaN/Al0.55Ga0.45N multiple quantum wells. Applied Surface Science, 2006, 252, 3043-3050.	3.1	1
135	Evolution of mosaic structure in InN grown by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2006, 293, 269-272.	0.7	8
136	Spatial distribution of deep level defects in crack-free AlGaN grown on GaN with a high-temperature AlN interlayer. Journal of Applied Physics, 2006, 100, 123101.	1.1	14
137	Low-temperature growth of InN by MOCVD and its characterization. Journal of Crystal Growth, 2005, 276, 13-18.	0.7	32
138	Study on the thermal stability of InN by in-situ laser reflectance system. Journal of Crystal Growth, 2005, 281, 310-317.	0.7	11
139	Lateral phase separation in AlGaN grown on GaN with a high-temperature AlN interlayer. Applied Physics Letters, 2005, 87, 121914.	1.5	32
140	Influence of dislocations on photoluminescence of InGaNâ^•GaN multiple quantum wells. Applied Physics Letters, 2005, 87, 071908.	1.5	53
141	One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Materials Research Bulletin, 2003, 38, 1113-1118.	2.7	189