Michael P Pollastri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2367528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiologic Targets and Modes of Action for CBL0137, a Lead for Human African Trypanosomiasis Drug Development. Molecular Pharmacology, 2022, 102, 1-16.	2.3	2
2	Lead Optimization of 3,5-Disubstituted-7-Azaindoles for the Treatment of Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2021, 64, 9404-9430.	6.4	6
3	Application of <scp>I</scp> -Threonine Aldolase to on-DNA Reactions. Bioconjugate Chemistry, 2021, 32, 1973-1978.	3.6	4
4	Hit-to-Lead Optimization of Benzoxazepinoindazoles As Human African Trypanosomiasis Therapeutics. Journal of Medicinal Chemistry, 2020, 63, 2527-2546.	6.4	11
5	Selectivity and Physicochemical Optimization of Repurposed Pyrazolo[1,5- <i>b</i>]pyridazines for the Treatment of Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2020, 63, 756-783.	6.4	10
6	Medicinal Chemistry Optimization of a Diaminopurine Chemotype: Toward a Lead for <i>Trypanosoma brucei</i> Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 9912-9927.	6.4	5
7	Structure–property studies of an imidazoquinoline chemotype with antitrypanosomal activity. RSC Medicinal Chemistry, 2020, 11, 950-959.	3.9	3
8	Scaffold and Parasite Hopping: Discovery of New Protozoal Proliferation Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 249-257.	2.8	17
9	Structure–Bioactivity Relationships of Lapatinib Derived Analogs against <i>Schistosoma mansoni</i> . ACS Medicinal Chemistry Letters, 2020, 11, 258-265.	2.8	2
10	Evaluation of a class of isatinoids identified from a high-throughput screen of human kinase inhibitors as anti-Sleeping Sickness agents. PLoS Neglected Tropical Diseases, 2019, 13, e0007129.	3.0	4
11	Improvement of Aqueous Solubility of Lapatinib-Derived Analogues: Identification of a Quinolinimine Lead for Human African Trypanosomiasis Drug Development. Journal of Medicinal Chemistry, 2019, 62, 665-687.	6.4	23
12	Fexinidazole: A New Drug for African Sleeping Sickness on the Horizon. Trends in Parasitology, 2018, 34, 178-179.	3.3	39
13	Optimization of Physicochemical Properties for 4-Anilinoquinoline Inhibitors of <i>Plasmodium falciparum</i> Proliferation. ACS Infectious Diseases, 2018, 4, 577-591.	3.8	12
14	Calcium-Dependent Protein Kinase 5 Is Required for Release of Egress-Specific Organelles in <i>Plasmodium falciparum</i> . MBio, 2018, 9, .	4.1	56
15	The Importance of Collaboration between Industry, Academics, and Nonprofits in Tropical Disease Drug Discovery. ACS Infectious Diseases, 2018, 4, 445-448.	3.8	13
16	Anilinoquinoline based inhibitors of trypanosomatid proliferation. PLoS Neglected Tropical Diseases, 2018, 12, e0006834.	3.0	7
17	Series of Alkynyl-Substituted Thienopyrimidines as Inhibitors of Protozoan Parasite Proliferation. ACS Medicinal Chemistry Letters, 2018, 9, 996-1001.	2.8	9
18	From Cells to Mice to Target: Characterization of NEU-1053 (SB-443342) and Its Analogues for Treatment of Human African Trypanosomiasis. ACS Infectious Diseases, 2017, 3, 225-236.	3.8	19

MICHAEL P POLLASTRI

#	Article	IF	CITATIONS
19	Antiparasitic Lead Discovery: Toward Optimization of a Chemotype with Activity Against Multiple Protozoan Parasites. ACS Medicinal Chemistry Letters, 2017, 8, 350-354.	2.8	21
20	Optimization of physicochemical properties for 4-anilinoquinazoline inhibitors of trypanosome proliferation. European Journal of Medicinal Chemistry, 2017, 141, 446-459.	5.5	18
21	Novel Effects of Lapatinib Revealed in the African Trypanosome by Using Hypothesis-Generating Proteomics and Chemical Biology Strategies. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	8
22	Fluorinated Adenosine A2A Receptor Antagonists Inspired by Preladenant as Potential Cancer Immunotherapeutics. International Journal of Medicinal Chemistry, 2017, 2017, 1-8.	2.2	5
23	The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target. PLoS Neglected Tropical Diseases, 2017, 11, e0005891.	3.0	16
24	Glycogen Synthase Kinase 3β Promotes the Endocytosis of Transferrin in the African Trypanosome. ACS Infectious Diseases, 2016, 2, 518-528.	3.8	12
25	Identification of "Preferred―Human Kinase Inhibitors for Sleeping Sickness Lead Discovery. Are Some Kinases Better than Others for Inhibitor Repurposing?. ACS Infectious Diseases, 2016, 2, 180-186.	3.8	28
26	Repurposing strategies for tropical disease drug discovery. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2569-2576.	2.2	83
27	Discovery of a Carbazole-Derived Lead Drug for Human African Trypanosomiasis. Scientific Reports, 2016, 6, 32083.	3.3	27
28	The Aryl Hydrocarbon Receptor is a Critical Regulator of Tissue Factor Stability and an Antithrombotic Target in Uremia. Journal of the American Society of Nephrology: JASN, 2016, 27, 189-201.	6.1	88
29	Protozoan Parasite Growth Inhibitors Discovered by Cross-Screening Yield Potent Scaffolds for Lead Discovery. Journal of Medicinal Chemistry, 2015, 58, 5522-5537.	6.4	56
30	Repurposing Human <scp>PDE</scp> 4 Inhibitors for Neglected Tropical Diseases. Evaluation of Analogs of the Human <scp>PDE</scp> 4 Inhibitor <scp>GSK</scp> â€256066 as Inhibitors of <scp>PDEB</scp> 1 of <i>Trypanosoma brucei</i> . Chemical Biology and Drug Design, 2015, 85, 549-564.	3.2	14
31	Evaluation of pyrrolidine and pyrazolone derivatives as inhibitors of trypanosomal phosphodiesterase B1 (TbrPDEB1). Tetrahedron Letters, 2015, 56, 2832-2835.	1.4	44
32	Ligand deconstruction: Why some fragment binding positions are conserved and others are not. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2585-94.	7.1	61
33	Evaluation of aromatic 6-substituted thienopyrimidines as scaffolds against parasites that cause trypanosomiasis, leishmaniasis, and malaria. MedChemComm, 2015, 6, 339-346.	3.4	32
34	A Target Repurposing Approach Identifies N-myristoyltransferase as a New Candidate Drug Target in Filarial Nematodes. PLoS Neglected Tropical Diseases, 2014, 8, e3145.	3.0	20
35	Identification and Characterization of Hundreds of Potent and Selective Inhibitors of Trypanosoma brucei Growth from a Kinase-Targeted Library Screening Campaign. PLoS Neglected Tropical Diseases, 2014, 8, e3253.	3.0	47
36	Finding New Collaboration Models for Enabling Neglected Tropical Disease Drug Discovery. PLoS Neglected Tropical Diseases, 2014, 8, e2866.	3.0	10

MICHAEL P POLLASTRI

#	Article	IF	CITATIONS
37	Repurposing human Aurora kinase inhibitors as leads for anti-protozoan drug discovery. MedChemComm, 2014, 5, 655-658.	3.4	42
38	A chemical screen identifies small molecules that regulate hepcidin expression. Blood Cells, Molecules, and Diseases, 2014, 53, 231-240.	1.4	18
39	Repurposing human PDE4 inhibitors for neglected tropical diseases: Design, synthesis and evaluation of cilomilast analogues as Trypanosoma brucei PDEB1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4084-4089.	2.2	26
40	Kinases as Druggable Targets in Trypanosomatid Protozoan Parasites. Chemical Reviews, 2014, 114, 11280-11304.	47.7	55
41	Establishment of a Structure–Activity Relationship of 1 <i>H</i> -Imidazo[4,5- <i>c</i>]quinoline-Based Kinase Inhibitor NVP-BEZ235 as a Lead for African Sleeping Sickness. Journal of Medicinal Chemistry, 2014, 57, 4834-4848.	6.4	35
42	In Silico Identification of an Aryl Hydrocarbon Receptor Antagonist with Biological Activity In Vitro and In Vivo. Molecular Pharmacology, 2014, 86, 593-608.	2.3	45
43	Identification of Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor Ligand That Drives IL-22 Production. PLoS ONE, 2014, 9, e87877.	2.5	106
44	The human Aurora kinase inhibitor danusertib is a lead compound for anti-trypanosomal drug discovery via target repurposing. European Journal of Medicinal Chemistry, 2013, 62, 777-784.	5.5	44
45	Synthesis and assessment of catechol diether compounds as inhibitors of trypanosomal phosphodiesterase B1 (TbrPDEB1). Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5971-5974.	2.2	8
46	Antitrypanosomal Lead Discovery: Identification of a Ligand-Efficient Inhibitor of Trypanosoma cruzi CYP51 and Parasite Growth. Journal of Medicinal Chemistry, 2013, 56, 2556-2567.	6.4	60
47	Kinase Scaffold Repurposing for Neglected Disease Drug Discovery: Discovery of an Efficacious, Lapatanib-Derived Lead Compound for Trypanosomiasis. Journal of Medicinal Chemistry, 2013, 56, 3820-3832.	6.4	66
48	Jumping the industrial-academia fence. Future Medicinal Chemistry, 2013, 5, 25-26.	2.3	0
49	Lapatinib-Binding Protein Kinases in the African Trypanosome: Identification of Cellular Targets for Kinase-Directed Chemical Scaffolds. PLoS ONE, 2013, 8, e56150.	2.5	36
50	Synthesis and evaluation of human phosphodiesterases (PDE) 5 inhibitor analogs as trypanosomal PDE inhibitors. Part 2. Tadalafil analogs. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2582-2584.	2.2	25
51	Synthesis and evaluation of human phosphodiesterases (PDE) 5 inhibitor analogs as trypanosomal PDE inhibitors. Part 1. Sildenafil analogs. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2579-2581.	2.2	23
52	Target repurposing for neglected diseases. Future Medicinal Chemistry, 2011, 3, 1307-1315.	2.3	75
53	Pharmacological Validation of Trypanosoma brucei Phosphodiesterases B1 and B2 as Druggable Targets for African Sleeping Sickness. Journal of Medicinal Chemistry, 2011, 54, 8188-8194.	6.4	46
54	The Future of Drug Repositioning. Annual Reports in Medicinal Chemistry, 2011, 46, 385-401.	0.9	29

MICHAEL P POLLASTRI

#	Article	IF	CITATIONS
55	The challenge of developing robust drugs to overcome resistance. Drug Discovery Today, 2011, 16, 755-61.	6.4	21
56	The Susceptibility of Trypanosomatid Pathogens to PI3/mTOR Kinase Inhibitors Affords a New Opportunity for Drug Repurposing. PLoS Neglected Tropical Diseases, 2011, 5, e1297.	3.0	70
57	Neutralizing Positive Charges at the Surface of a Protein Lowers Its Rate of Amide Hydrogen Exchange without Altering Its Structure or Increasing Its Thermostability. Journal of the American Chemical Society, 2010, 132, 17411-17425.	13.7	29
58	Overview on the Rule of Five. Current Protocols in Pharmacology, 2010, 49, Unit 9.12.	4.0	108
59	Identification and Characterization of Kavaâ€derived Compounds Mediating TNFâ€ <i>α</i> Suppression. Chemical Biology and Drug Design, 2009, 74, 121-128.	3.2	28
60	Efficient Use of the Iron Orthoâ€Nitrophenylporphyrin Chloride to Mimic Biological Oxidations of Dimethylaminoantipyrine. Chemical Biology and Drug Design, 2007, 70, 354-359.	3.2	9
61	The conversion of alcohols to halides using a filterable phosphine source. Tetrahedron Letters, 2001, 42, 2459-2460.	1.4	23
62	Synthesis, structure, and thermal properties of 1,2-dipalmitoylgalloylglycerol (DPGG), a novel self-adhering lipid. Chemistry and Physics of Lipids, 2000, 104, 67-74.	3.2	8
63	Polyphenols Increase Adhesion Between Lipid Bilayers by Forming Interbilayer Bridges. , 1999, 66, 451-470.		2
64	2-Benzoylbenzoic Acid:Â A Photolabile Mask for Alcohols and Thiols. Journal of Organic Chemistry, 1996, 61, 9455-9461.	3.2	51
65	Cis-3,5-dimethyl-3,5-piperidinedicarboxylic acid, an amino diacid variant of Kemp's triacid. Tetrahedron Letters, 1994, 35, 4515-4518	1.4	7
66	Loss of the tert-butyloxycarbonyl (Boc) protecting group under basic conditions. Tetrahedron Letters, 1994, 35, 5409-5412.	1.4	40