Tanja Knaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2367119/publications.pdf

Version: 2024-02-01

331670 395702 1,627 33 21 33 citations h-index g-index papers 37 37 37 1403 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from <scp>l</scp> -Phenylalanine via Linear and Divergent Enzymatic Cascades. Organic Process Research and Development, 2022, 26, 2085-2095.	2.7	15
2	Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity. Chemistry - A European Journal, 2021, 27, 3315-3325.	3.3	15
3	High Regio―and Stereoselective Multiâ€enzymatic Synthesis of All Phenylpropanolamine Stereoisomers from βâ€Methylstyrene. ChemBioChem, 2021, 22, 2345-2350.	2.6	17
4	Kinetic Resolution of Racemic Primary Amines Using <i>Geobacillus stearothermophilus</i> Amine Dehydrogenase Variant. ChemCatChem, 2020, 12, 2184-2188.	3.7	13
5	Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-Lysine dehydrogenase. Nature Communications, 2019, 10, 3717.	12.8	66
6	Efficient synthesis of enantiopure amines from alcohols using resting < i>E. coli < /i> cells and ammonia. Green Chemistry, 2019, 21, 3846-3857.	9.0	29
7	A Photo-Enzymatic Cascade to Transform Racemic Alcohols into Enantiomerically Pure Amines. Catalysts, 2019, 9, 305.	3.5	21
8	Regio- and stereoselective multi-enzymatic aminohydroxylation of \hat{l}^2 -methylstyrene using dioxygen, ammonia and formate. Green Chemistry, 2019, 21, 6246-6251.	9.0	33
9	Highly efficient production of chiral amines in batch and continuous flow by immobilized ï‰-transaminases on controlled porosity glass metal-ion affinity carrier. Journal of Biotechnology, 2019, 291, 52-60.	3.8	32
10	Mechanistic Insight into the Catalytic Promiscuity of Amine Dehydrogenases: Asymmetric Synthesis of Secondary and Primary Amines. ChemBioChem, 2019, 20, 800-812.	2.6	29
11	A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation. ChemBioChem, 2018, 19, 679-686.	2.6	43
12	Hydrogenâ€Borrowing Alcohol Bioamination with Coimmobilized Dehydrogenases. ChemCatChem, 2018, 10, 731-735.	3.7	56
13	Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angewandte Chemie, 2018, 130, 14436-14440.	2.0	13
14	Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angewandte Chemie - International Edition, 2018, 57, 14240-14244.	13.8	39
15	A biocatalytic method for the chemoselective aerobic oxidation of aldehydes to carboxylic acids. Green Chemistry, 2018, 20, 3931-3943.	9.0	36
16	In vitro biocatalytic pathway design: orthogonal network for the quantitative and stereospecific amination of alcohols. Organic and Biomolecular Chemistry, 2017, 15, 8313-8325.	2.8	33
17	Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds. Green Chemistry, 2017, 19, 453-463.	9.0	113
18	Biocatalytic hydrogen-borrowing cascades. Chimica Oggi, 2017, 35, .	1.7	O

#	Article	IF	CITATIONS
19	Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes. Journal of the American Chemical Society, 2016, 138, 1033-1039.	13.7	164
20	Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science, 2015, 349, 1525-1529.	12.6	339
21	Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral \hat{l} ±-substituted carboxylic acids from \hat{l} ±-substituted \hat{l} ±, \hat{l} 2-unsaturated aldehydes. Organic and Biomolecular Chemistry, 2015, 13, 223-233.	2.8	51
22	Structure and stability of an unusual zinc-binding protein from Bacteroides thetaiotaomicron. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2298-2305.	2.3	1
23	Alternative Hydride Sources for Eneâ€Reductases: Current Trends. ChemCatChem, 2014, 6, 951-954.	3.7	38
24	Determination of free and bound riboflavin in cow's milk using a novel flavin-binding protein. Food Chemistry, 2014, 146, 94-97.	8.2	19
25	Oneâ€Pot Deracemization of <i>sec</i> â€Alcohols: Enantioconvergent Enzymatic Hydrolysis of Alkyl Sulfates Using Stereocomplementary Sulfatases. Angewandte Chemie, 2013, 125, 3359-3361.	2.0	6
26	Asymmetric Amination of Tetralone and Chromanone Derivatives Employing ï‰-Transaminases. ACS Catalysis, 2013, 3, 555-559.	11.2	60
27	The Flavoenzyme Azobenzene Reductase AzoR from <i>Escherichia coli</i> Binds Roseoflavin Mononucleotide (RoFMN) with High Affinity and Is Less Active in Its RoFMN Form. Biochemistry, 2013, 52, 4288-4295.	2.5	33
28	Oneâ€Pot Deracemization of <i>sec</i> â€Alcohols: Enantioconvergent Enzymatic Hydrolysis of Alkyl Sulfates Using Stereocomplementary Sulfatases. Angewandte Chemie - International Edition, 2013, 52, 3277-3279.	13.8	27
29	Reverse Structural Genomics. Journal of Biological Chemistry, 2012, 287, 27490-27498.	3.4	3
30	Structure and mechanism of an inverting alkylsulfatase from <i><scp>P</scp>seudomonas</i> Âsp.Â <scp>DSM</scp> 6611 specific for secondary alkyl sulfates. FEBS Journal, 2012, 279, 4374-4384.	4.7	22
31	The Substrate Spectrum of the Inverting <i>sec</i> â€Alkylsulfatase Pisa1. Advanced Synthesis and Catalysis, 2012, 354, 1737-1742.	4.3	16
32	A Stereoselective Inverting <i>sec</i> -Alkylsulfatase for the Deracemization of <i>sec</i> -Alcohols. Organic Letters, 2011, 13, 4296-4299.	4.6	33
33	Orchestration of Concurrent Oxidation and Reduction Cycles for Stereoinversion and Deracemisation of <i>sec</i> -Alcohols. Journal of the American Chemical Society, 2008, 130, 13969-13972.	13.7	183