Fanglin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2367103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atmospheric plasma spraying to fabricate metalâ€supported solid oxide fuel cells with openâ€channel porous metal support. Journal of the American Ceramic Society, 2023, 106, 68-78.	3.8	3
2	Electrochemical analysis of BaZr0.8Y0.2O3-δ-Gd0.2Ce0.8O2-δ composite electrolytes by distribution of relaxation time method. Ceramics International, 2022, 48, 12856-12865.	4.8	6
3	Review: Measurement of partial electrical conductivities and transport numbers of mixed ionic-electronic conducting oxides. Journal of Power Sources, 2022, 528, 231201.	7.8	25
4	Boosting and Robust Multifunction Cathode Layer for Solid Oxide Fuel Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 6817-6825.	6.7	9
5	Perspective—Solid Oxide Cell Technology for Space Exploration. Journal of the Electrochemical Society, 2022, 169, 054528.	2.9	4
6	Enhancing performance of molybdenum doped strontium ferrite electrode by surface modification through Ni infiltration. International Journal of Hydrogen Energy, 2021, 46, 10876-10891.	7.1	23
7	Rational Identification of Doping Strategy to Achieve a Highly Conductive and Reliable Protonic Electrolyte for Electrochemical Cells. ECS Meeting Abstracts, 2021, MA2021-01, 1155-1155.	0.0	0
8	C2H6 Dehydrogenation and Electrical Power Production in a Protonic Conducting Fuel Cell with in-Situ Exsolved Metal Nanoparticle Catalyst. ECS Meeting Abstracts, 2021, MA2021-01, 1161-1161.	0.0	0
9	Feldspar-based CaO–K2O–Na2O–BaO silicate glass sealant for solid oxide fuel cells. Ceramics International, 2021, 47, 14630-14634.	4.8	14
10	A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. Journal of Power Sources, 2021, 493, 229713.	7.8	83
11	Enhanced electrochemical performance and durability for direct CH4–CO2 solid oxide fuel cells with an on-cell reforming layer. International Journal of Hydrogen Energy, 2021, 46, 22974-22982.	7.1	22
12	Development of catalytic combustion and CO2 capture and conversion technology. International Journal of Coal Science and Technology, 2021, 8, 377-382.	6.0	16
13	A practical approach for identifying various polarization behaviors of redox-stable electrodes in symmetrical solid oxide fuel cells. Electrochimica Acta, 2021, 384, 138340.	5.2	12
14	A review on anode on-cell catalyst reforming layer for direct methane solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 25208-25224.	7.1	38
15	Progress report on the catalyst layers for hydrocarbon-fueled SOFCs. International Journal of Hydrogen Energy, 2021, 46, 39369-39386.	7.1	32
16	An ab initio study of the oxygen defect formation and oxide ion migration in (Sr1-xPrx)2FeO4±δ. Journal of Power Sources, 2021, 515, 230602.	7.8	5
17	Robust redox-reversible perovskite type steam electrolyser electrode decorated with <i>in situ</i> exsolved metallic nanoparticles. Journal of Materials Chemistry A, 2020, 8, 582-591.	10.3	47
18	NaGaS ₂ : An Elusive Layered Compound with Dynamic Water Absorption and Wideâ€Ranging Ionâ€Exchange Properties. Angewandte Chemie, 2020, 132, 10928-10933.	2.0	4

#	Article	IF	CITATIONS
19	Power and carbon monoxide co-production by a proton-conducting solid oxide fuel cell with La _{0.6} Sr _{0.2} Cr _{0.85} Ni _{0.15} O _{3â^îî} for on-cell dry reforming of CH ₄ by CO ₂ . Journal of Materials Chemistry A, 2020, 8, 9806-9812.	10.3	33
20	Energy storage and hydrogen production by proton conducting solid oxide electrolysis cells with a novel heterogeneous design. Energy Conversion and Management, 2020, 218, 113044.	9.2	46
21	LaCrO3-Coated La0.6Sr0.4Co0.2Fe0.8O3â^îî´Core–Shell Structured Cathode with Enhanced Cr Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 29133-29142.	8.0	4
22	Redox-Reversible Electrode Material for Direct Hydrocarbon Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 13988-13995.	8.0	53
23	A novel equivalent circuit for GDC-based solid oxide cells considering the variations of cell resistances under load. Electrochimica Acta, 2020, 340, 135898.	5.2	4
24	Electrochemical Dehydrogenation of Ethane to Ethylene in a Solid Oxide Electrolyzer. ACS Catalysis, 2020, 10, 3505-3513.	11.2	62
25	Effect of non-solvent from the phase inversion method on the morphology and performance of the anode supported microtubular solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 6926-6933.	7.1	16
26	NaGaS 2 : An Elusive Layered Compound with Dynamic Water Absorption and Wideâ€Ranging Ionâ€Exchange Properties. Angewandte Chemie - International Edition, 2020, 59, 10836-10841.	13.8	14
27	One Step Synthesis of Sr2Fe1.3Co0.2Mo0.5O6â^´î´ -Gd0.1Ce0.9O2â^`î´ for Symmetrical Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2020, 167, 084503.	2.9	8
28	Novel structured Sm0.5Sr0.5CoO3-Î′ cathode for intermediate and low temperature solid oxide fuel cells. Electrochimica Acta, 2020, 341, 136031.	5.2	31
29	Progress Report on Proton Conducting Solid Oxide Electrolysis Cells. Advanced Functional Materials, 2019, 29, 1903805.	14.9	120
30	Pr0.5Ba0.5Co0.7Fe0.25Nb0.05O3-î´ as air electrode for solid oxide steam electrolysis cells. International Journal of Hydrogen Energy, 2019, 44, 23539-23546.	7.1	25
31	Evaluation of Cr-Tolerance of the Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^î^} Cathode for Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2019, 2, 7619-7627.	5.1	18
32	Electron doping of Sr ₂ FeMoO _{6â^'Î} as high performance anode materials for solid oxide fuel cells. Journal of Materials Chemistry A, 2019, 7, 733-743.	10.3	42
33	High-throughput 3D reconstruction of stochastic heterogeneous microstructures in energy storage materials. Npj Computational Materials, 2019, 5, .	8.7	18
34	A Promising Composite Anode for Solid Oxide Fuel Cells: Sr ₂ FeMo _{0.65} Ni _{0.35} O _{6-δ} -Gd _{0.1} Ce _{0.9Journal of the Electrochemical Society, 2019, 166, F109-F113.}	sub 2.0 <su< td=""><td>ວ>29́.</td></su<>	ວ> 29 ́.
35	Enhanced CO ₂ electrolysis with a SrTiO ₃ cathode through a dual doping strategy. Journal of Materials Chemistry A, 2019, 7, 2764-2772.	10.3	33
36	A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and	10.3	58

steam. Journal of Materials Chemistry A, 2019, 7, 13550-13558.

3

#	Article	IF	CITATIONS
37	High-throughput, super-resolution 3D reconstruction of nano-structured solid oxide fuel cell electrodes and quantification of microstructure-property relationships. Journal of Power Sources, 2019, 427, 112-119.	7.8	26
38	Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer. Nature Communications, 2019, 10, 1173.	12.8	93
39	Enhanced carbon dioxide electrolysis at redox manipulated interfaces. Nature Communications, 2019, 10, 1550.	12.8	59
40	A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ cathode for proton conducting solid oxide fuel cells. Journal of Power Sources, 2018, 389, 1-7.	7.8	48
41	Molybdenum dioxide as an alternative catalyst for direct utilization of methane in tubular solid oxide fuel cells. Electrochemistry Communications, 2018, 86, 126-129.	4.7	21
42	Highly efficient electrochemical reforming of CH ₄ /CO ₂ in a solid oxide electrolyser. Science Advances, 2018, 4, eaar5100.	10.3	136
43	In-situ growth of metallic nanoparticles on perovskite parent as a hydrogen electrode for solid oxide cells. Journal of Power Sources, 2018, 405, 114-123.	7.8	45
44	Molybdenum-based double perovskites A2CrMoO6â^' (AÂ= Ca, Sr, Ba) as anode materials for solid oxide fuel cells. Electrochimica Acta, 2018, 290, 440-450.	5.2	29
45	Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming. Applied Energy, 2018, 224, 280-288.	10.1	45
46	Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage. Journal of Power Sources, 2018, 400, 333-340.	7.8	50
47	The co-electrolysis of CO ₂ –H ₂ O to methane via a novel micro-tubular electrochemical reactor. Journal of Materials Chemistry A, 2017, 5, 2904-2910.	10.3	43
48	An Intermediate-Temperature Oxygen Transport Membrane Based on Rare-Earth Doped Bismuth Oxide Dy _{0.08} W _{0.04} Bi _{0.88} O _{2-δ} . Journal of the Electrochemical Society, 2017, 164, F347-F353.	2.9	7
49	Methane assisted solid oxide co-electrolysis process for syngas production. Journal of Power Sources, 2017, 344, 119-127.	7.8	25
50	Enhanced water desalination performance through hierarchically-structured ceramic membranes. Journal of the European Ceramic Society, 2017, 37, 2431-2438.	5.7	30
51	Enhanced Oxygen Reduction Activity on Ruddlesden–Popper Phase Decorated La _{0.8} Sr _{0.2} FeO _{3â~Î} 3D Heterostructured Cathode for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2017, 9, 8659-8668.	8.0	52
52	Ni infiltrated Sr2Fe1.5Mo0.5O6-δ-Ce0.8Sm0.2O1.9 electrode for methane assisted steam electrolysis process. Electrochemistry Communications, 2017, 79, 63-67.	4.7	30
53	High temperature solid oxide H2O/CO2 co-electrolysis for syngas production. Fuel Processing Technology, 2017, 161, 248-258.	7.2	95
54	Intermediate-temperature solid oxide electrolysis cells with thin proton-conducting electrolyte and a robust air electrode. Journal of Materials Chemistry A, 2017, 5, 22945-22951.	10.3	91

#	Article	IF	CITATIONS
55	A novel fuel electrode enabling direct CO ₂ electrolysis with excellent and stable cell performance. Journal of Materials Chemistry A, 2017, 5, 20833-20842.	10.3	128
56	Solvent effects on the morphology and performance of the anode substrates for solid oxide fuel cells. Journal of Power Sources, 2017, 363, 304-310.	7.8	25
57	Numerical investigation of solid oxide electrolysis cells for hydrogen production applied with different continuity expressions. Energy Conversion and Management, 2017, 149, 646-659.	9.2	14
58	Highly Efficient CO ₂ Electrolysis on Cathodes with Exsolved Alkaline Earth Oxide Nanostructures. ACS Applied Materials & Interfaces, 2017, 9, 25350-25357.	8.0	47
59	Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis. Applied Energy, 2016, 173, 52-58.	10.1	36
60	Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices. Journal of Power Sources, 2016, 331, 167-179.	7.8	13
61	Nanocrystals-based Macroporous Materials Synthesized by Freeze-drying Combustion. Electrochimica Acta, 2016, 217, 187-194.	5.2	4
62	Self-Assembled Magnetic Metallic Nanopillars in Ceramic Matrix with Anisotropic Magnetic and Electrical Transport Properties. ACS Applied Materials & Interfaces, 2016, 8, 20283-20291.	8.0	39
63	A dual-phase bilayer oxygen permeable membrane with hierarchically porous structure fabricated by freeze-drying tape-casting method. Journal of Membrane Science, 2016, 520, 354-363.	8.2	27
64	A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy, 2016, 26, 90-99.	16.0	93
65	La0.4Bi0.4Sr0.2FeO3-δ as Cobalt-free Cathode for Intermediate-Temperature Solid Oxide Fuel Cell. Electrochimica Acta, 2016, 191, 651-660.	5.2	56
66	Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1.5Mo0.5O6–Sm0.2Ce0.8O1.9 electrodes. Journal of Power Sources, 2016, 305, 240-248.	7.8	90
67	High-performance solid oxide fuel cells based on a thin La0.8Sr0.2Ga0.8Mg0.2O3â^'δ electrolyte membrane supported by a nickel-based anode of unique architecture. Journal of Power Sources, 2016, 301, 199-203.	7.8	28
68	Two-Step Reactive Aid Sintering of BaZr0.8Y0.2O3â~'δ Proton-Conducting Ceramics. Journal of Electronic Materials, 2015, 44, 4898-4906.	2.2	6
69	Fabrication of micro-tubular solid oxide fuel cells using sulfur-free polymer binder via a phase inversion method. Journal of Power Sources, 2015, 290, 1-7.	7.8	40
70	Microporous La0.8Sr0.2MnO3 perovskite nanorods as efficient electrocatalysts for lithium–air battery. Journal of Power Sources, 2015, 293, 726-733.	7.8	91
71	Steam electrolysis in a solid oxide electrolysis cell fabricated by the phase-inversion tape casting method. Electrochemistry Communications, 2015, 61, 106-109.	4.7	62
72	Barium carbonate nanoparticle as high temperature oxygen reduction catalyst for solid oxide fuel cell. Electrochemistry Communications, 2015, 51, 93-97.	4.7	43

#	Article	IF	CITATIONS
73	Sulfurâ€Tolerant Hierarchically Porous Ceramic Anodeâ€&upported Solidâ€Oxide Fuel Cells with Selfâ€Precipitated Nanocatalyst. ChemElectroChem, 2015, 2, 672-678.	3.4	23
74	Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. Journal of Power Sources, 2015, 283, 464-477.	7.8	164
75	Effect of PEG additive on anode microstructure and cell performance of anode-supported MT-SOFCs fabricated by phase inversion method. Journal of Power Sources, 2015, 279, 774-780.	7.8	20
76	Novel light-weight, high-performance anode-supported microtubular solid oxide fuel cells with an active anode functional layer. Journal of Power Sources, 2015, 293, 852-858.	7.8	29
77	Co-electrolysis of H ₂ O and CO ₂ in a solid oxide electrolysis cell with hierarchically structured porous electrodes. Journal of Materials Chemistry A, 2015, 3, 15913-15919.	10.3	41
78	Barium carbonate nanoparticle to enhance oxygen reduction activity of strontium doped lanthanum ferrite for solid oxide fuel cell. Journal of Power Sources, 2015, 278, 741-750.	7.8	46
79	Spark-plasma-sintered barium zirconate based proton conductors for solid oxide fuel cell and hydrogen separation applications. International Journal of Hydrogen Energy, 2015, 40, 5707-5714.	7.1	23
80	Stability Investigation for Symmetric Solid Oxide Fuel Cell with La _{0.4} Sr _{0.6} Co _{0.2} Fe _{0.7} Nb _{0.1} O _{3-δ} E Journal of the Electrochemical Society, 2015, 162, F718-F721.	le zt rode.	44
81	Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors. Nature Communications, 2015, 6, 6824.	12.8	195
82	Thermal aging stability of infiltrated solid oxide fuel cell electrode microstructures: A three-dimensional kinetic Monte Carlo simulation. Journal of Power Sources, 2015, 299, 578-586.	7.8	15
83	Low temperature co-sintering of Sr2Fe1.5Mo0.5O6â^îî–Gd0.1Ce0.9O2â^îî′anode-supported solid oxide fuel cells with Li2O–Gd0.1Ce0.9O2â^îî′electrolyte. Journal of Power Sources, 2015, 297, 271-275.	7.8	12
84	New formulas for the tortuosity factor of electrochemically conducting channels. Electrochemistry Communications, 2015, 60, 52-55.	4.7	5
85	Relationship between fabrication method and chemical stability of Ni–BaZr0.8Y0.2O3â~' membrane. Journal of Power Sources, 2015, 278, 614-622.	7.8	27
86	Carbon-coating functionalized La0.6Sr1.4MnO4+δlayered perovskite oxide: enhanced catalytic activity for the oxygen reduction reaction. RSC Advances, 2015, 5, 974-980.	3.6	30
87	La _{0.7} Sr _{0.3} Fe _{0.7} Ga _{0.3} O _{3â^îr} as electrode material for a symmetrical solid oxide fuel cell. RSC Advances, 2015, 5, 2702-2705.	3.6	44
88	Composite-porous polymer membrane with reduced crystalline for lithium–ion battery via non-solvent evaporate method. Ionics, 2015, 21, 593-599.	2.4	15
89	In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy, 2015, 11, 704-710.	16.0	173
90	In-situ quantification of solid oxide fuel cell electrode microstructure by electrochemical impedance spectroscopy. Journal of Power Sources, 2015, 277, 277-285.	7.8	61

#	Article	IF	CITATIONS
91	A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process. Journal of Power Sources, 2015, 277, 261-267.	7.8	50
92	Direct synthesis of methane from CO ₂ –H ₂ O co-electrolysis in tubular solid oxide electrolysis cells. Energy and Environmental Science, 2014, 7, 4018-4022.	30.8	139
93	Redox Stable Anodes for Solid Oxide Fuel Cells. Frontiers in Energy Research, 2014, 2, .	2.3	30
94	Performance evaluation of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3â~δ as both anode and cathode material in solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 7402-7406.	7.1	88
95	Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst. Journal of Power Sources, 2014, 262, 421-428.	7.8	35
96	Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3. Journal of Power Sources, 2014, 245, 875-885.	7.8	19
97	Novel Chemically Stable Ba ₃ Ca _{1.18} Nb _{1.82–<i>x</i>} Y _{<i>x</i>} O _{9â[^]î´} Proton Conductor: Improved Proton Conductivity through Tailored Cation Ordering. Chemistry of Materials. 2014. 26. 2021-2029.	6.7	42
98	Investigation of A-site deficient Ba0.9Co0.7Fe0.2Nb0.1O3â^'δ cathode for proton conducting electrolyte based solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 8431-8436.	7.1	21
99	Hydrogen permeability and chemical stability of Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3â~î^ membrane in concentrated H2O and CO2. Journal of Membrane Science, 2014, 467, 85-92.	8.2	39
100	A rapid analytical assessment tool for three dimensional electrode microstructural networks with geometric sensitivity. Journal of Power Sources, 2014, 246, 322-334.	7.8	27
101	Local Supersaturation Dictated Branching and Faceting of Submicrometer PbS Particles with Cubic Growth Habit. Inorganic Chemistry, 2014, 53, 11484-11491.	4.0	12
102	Investigation of the high-temperature redox chemistry of Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^îî} via in situ neutron diffraction. Journal of Materials Chemistry A, 2014, 2, 4045-4054.	10.3	19
103	Effect of casting slurry composition on anode support microstructure and cell performance of MT-SOFCs by phase inversion method. Electrochimica Acta, 2014, 149, 159-166.	5.2	23
104	Microstructure Tailoring of the Nickel Oxide–Yttria-Stabilized Zirconia Hollow Fibers toward High-Performance Microtubular Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2014, 6, 18853-18860.	8.0	46
105	Influence of crystal structure on the electrochemical performance of A-site-deficient Sr _{1â^'îs} Nb _{0.1} Co _{0.9} O _{3â^'Î} perovskite cathodes. RSC Advances, 2014, 4, 40865-40872.	3.6	40
106	Host–guest interaction dictated selective adsorption and fluorescence quenching of a luminescent lightweight metal–organic framework toward liquid explosives. Dalton Transactions, 2014, 43, 15237-15244.	3.3	26
107	Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites. Nanoscale, 2014, 6, 4480.	5.6	19
108	Releasing Metal Catalysts via Phase Transition: (NiO) _{0.05} -(SrTi _{0.8} Nb _{0.2} O ₃) _{0.95} as a Redox Stable Anode Material for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2014, 6, 19990-19996.	8.0	39

#	Article	IF	CITATIONS
109	Unprecedented CO ₂ -Promoted Hydrogen Permeation in Ni-BaZr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1} O _{3â~î^} Membrane. ACS Applied Materials & Interfaces, 2014, 6, 725-730.	8.0	32
110	Three-dimensional branched single-crystal \hat{l}^2 -Co(OH)2 nanowire array and its application for supercapacitor with excellent electrochemical property. Nano Energy, 2014, 10, 153-162.	16.0	58
111	Theoretical Investigation of H ₂ Oxidation on the Sr ₂ Fe _{1.5} Mo _{0.5} O ₆ (001) Perovskite Surface under Anodic Solid Oxide Fuel Cell Conditions. Journal of the American Chemical Society, 2014, 136, 8374-8386.	13.7	68
112	Bismuth Doped Lanthanum Ferrite Perovskites as Novel Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2014, 6, 11286-11294.	8.0	81
113	Tortuosity factor of three-dimensional infiltrate network. Journal of Power Sources, 2014, 269, 189-193.	7.8	9
114	Melt processed multiphase ceramic waste forms for nuclear waste immobilization. Journal of Nuclear Materials, 2014, 454, 12-21.	2.7	44
115	Direct-methane solid oxide fuel cells with hierarchically porous Ni-based anode deposited with nanocatalyst layer. Nano Energy, 2014, 10, 1-9.	16.0	100
116	Synthesis and formation mechanism of CuInS ₂ nanocrystals with a tunable phase. CrystEngComm, 2014, 16, 9596-9602.	2.6	31
117	Mechanism of Sulfur Poisoning of Sr ₂ Fe _{1.5} Mo _{0.5} O _{6-î´} Perovskite Anode under Solid Oxide Fuel Cell Conditions. Journal of Physical Chemistry C, 2014, 118, 23545-23552.	3.1	23
118	A sinteractive Ni–BaZr0.8Y0.2O3â~δ composite membrane for hydrogen separation. Journal of Materials Chemistry A, 2014, 2, 5825.	10.3	34
119	Hierarchically Oriented Macroporous Anode-Supported Solid Oxide Fuel Cell with Thin Ceria Electrolyte Film. ACS Applied Materials & Interfaces, 2014, 6, 5130-5136.	8.0	87
120	A Sintering Kinetics Model for Ceramic Dualâ€Phase Composite. Journal of the American Ceramic Society, 2014, 97, 2580-2589.	3.8	11
121	Ni-doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6-î´} as Anode Materials for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F305-F310.	2.9	41
122	Ion-irradiation induced reduction in Sr2Fe1.5Mo0.5O6â^'δ perovskite. Nuclear Instruments & Methods in Physics Research B, 2014, 326, 298-302.	1.4	2
123	Evaluation of Li2O as an efficient sintering aid for gadolinia-doped ceria electrolyte for solid oxide fuel cells. Journal of Power Sources, 2014, 261, 255-263.	7.8	72
124	Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network. Nano Energy, 2014, 8, 25-33.	16.0	144
125	lonic conductivity of impregnated samaria doped ceria for solid oxide fuel cells. Electrochimica Acta, 2014, 136, 422-429.	5.2	18
126	Ni-doped Sr2Fe1.5Mo0.5O6 as Anode Materials for Solid Oxide Fuel Cells. ECS Transactions, 2013, 58, 255-264.	0.5	5

#	Article	IF	CITATIONS
127	Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics. Electrochimica Acta, 2013, 87, 194-200.	5.2	34
128	Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochimica Acta, 2013, 113, 481-489.	5.2	230
129	Enhanced reducibility and conductivity of Na/K-doped SrTi0.8Nb0.2O3. Journal of Materials Chemistry A, 2013, 1, 10546.	10.3	20
130	Improving the chemical stability of BaCe0.8Sm0.2O3â~î´ electrolyte by Cl doping for proton-conducting solid oxide fuel cell. Electrochemistry Communications, 2013, 28, 87-90.	4.7	50
131	Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6â ^{~°} δ as a possible solid oxide fuel cell electrode. Journal of Power Sources, 2013, 237, 13-18.	7.8	30
132	Preparation and thermoelectric properties of inhomogeneous bismuth telluride alloyed nanorods. Journal of Alloys and Compounds, 2013, 570, 86-93.	5.5	34
133	Intermediate temperature micro-tubular SOFCs with enhanced performance and thermal stability. Electrochemistry Communications, 2013, 34, 231-234.	4.7	22
134	Irradiation effect on the structure change for Sr2Fe1.5Mo0.5O6â^îr´ perovskite ceramic. Journal of Alloys and Compounds, 2013, 578, 170-175.	5.5	5
135	High performance solid oxide electrolysis cells using Pr0.8Sr1.2(Co,Fe)0.8Nb0.2O4+δ–Co–Fe alloy hydrogen electrodes. International Journal of Hydrogen Energy, 2013, 38, 11202-11208.	7.1	39
136	Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of Power Sources, 2013, 237, 243-259.	7.8	140
137	The Effect of Isostatic Pressing on the Dielectric Properties of Screen Printed Ba0.5Sr0.5TiO3 Thick Films. Journal of Ceramics, 2013, 2013, 1-6.	0.9	0
138	Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^î^} - Sm _{0.2} Ce _{0.8} O _{1.9} Composite Anodes for Intermediate-Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2012, 159, B619-B626.	2.9	73
139	Startup Characteristics of Propane-Fueled and Thermally Self-Sustained Solid Oxide Fuel Cell Hot Zones. Journal of the Electrochemical Society, 2012, 159, B723-B728.	2.9	2
140	Obtaining mixed ionic/electronic conductivity in perovskite oxides in a reducing environment: A computational prediction for doped SrTiO3. Solid State Ionics, 2012, 228, 37-45.	2.7	19
141	High performance low temperature solid oxide fuel cells with novel electrode architecture. RSC Advances, 2012, 2, 12118.	3.6	37
142	La0.9â^`xCaxCe0.1CrO3â^`δ as potential anode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 10866-10873.	7.1	19
143	Two-step co-sintering method to fabricate anode-supported Ba3Ca1.18Nb1.82O9â^î´ proton-conducting solid oxide fuel cells. Journal of Power Sources, 2012, 215, 221-226.	7.8	21
144	Oxygen surface exchange properties of La0.6Sr0.4Co0.8Fe0.2O3Ââ^' δ coated with SmxCe1Ââ^' xO2Ââ^' δ. Jourr of Power Sources, 2012, 218, 254-260.	1al 7.8	80

#	Article	IF	CITATIONS
145	Sr2Fe1+xMo1-xO6-Â as Anode Materials for Solid Oxide Fuel Cells. ECS Transactions, 2012, 45, 355-362.	0.5	18
146	Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process. Journal of Power Sources, 2012, 203, 34-41.	7.8	62
147	Unveiling Structure–Property Relationships in Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â~î^} , an Electrode Material for Symmetric Solid Oxide Fuel Cells. Journal of the American Chemical Society, 2012, 134, 6826-6833.	13.7	172
148	Ga site doping and concentration variation effects on the conductivities of melilite-type lanthanum strontium gallate electrolytes. International Journal of Hydrogen Energy, 2012, 37, 961-966.	7.1	10
149	Effects of doped ceria conductivity on the performance of La0.6Sr0.4Co0.2Fe0.8O3â~δ cathode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2012, 37, 8582-8591.	7.1	30
150	La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2012, 14, 75-77.	4.7	47
151	Ni modified ceramic anodes for solid oxide fuel cells. Journal of Power Sources, 2012, 201, 43-48.	7.8	52
152	Intermediate temperature solid oxide fuel cells with Cu1.3Mn1.7O4 internal reforming layer. Journal of Power Sources, 2012, 201, 66-71.	7.8	22
153	Synthesis and characterization of Mo-doped SrFeO3â~î~ as cathode materials for solid oxide fuel cells. Journal of Power Sources, 2012, 202, 63-69.	7.8	147
154	Performance enhancement of Ni-YSZ electrode by impregnation of Mo0.1Ce0.9O2+Î′. Journal of Power Sources, 2012, 204, 40-45.	7.8	60
155	Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 2012, 213, 93-99.	7.8	85
156	Synthesis of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton conducting ceramic by a modified Pechini method. Solid State Ionics, 2012, 213, 29-35.	2.7	61
157	Sulfurâ€Tolerant Redoxâ€Reversible Anode Material for Direct Hydrocarbon Solid Oxide Fuel Cells. Advanced Materials, 2012, 24, 1439-1443.	21.0	251
158	Strontium- and Manganese-Doped Lanthanum Gallate as a Potential Anode Material for Intermediate-Temperature Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 2011, 94, 1114-1118.	3.8	5
159	Doping effects on complex perovskite Ba3Ca1.18Nb1.82O9â^î^î intermediate temperature proton conductor. Journal of Power Sources, 2011, 196, 7917-7923.	7.8	32
160	Infiltrated multiscale porous cathode for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2011, 196, 8544-8548.	7.8	13
161	Sr2Fe1.5Mo0.5O6â ^{~°} δ as a regenerative anode for solid oxide fuel cells. Journal of Power Sources, 2011, 196, 9148-9153.	7.8	130
162	BaCo0.7Fe0.2Nb0.1O3â~δas cathode material for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 9164-9168.	7.8	46

#	Article	IF	CITATIONS
163	Synthesis and characterizations of A-site deficient perovskite Sr0.9Ti0.8â^'xGaxNb0.2O3. Materials Research Bulletin, 2011, 46, 57-61.	5.2	16
164	Novel BaCe0.7In0.2Yb0.1O3-î´ proton conductor as electrolyte for intermediate-temperature SOFCs. Fuel Cells Bulletin, 2011, 2011, 12-16.	0.1	0
165	Ba0.9Co0.7Fe0.2Nb0.1O3â^´î´ as cathode material for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 882-885.	4.7	90
166	Ba0.9Co0.5Fe0.4Nb0.1O3â^`î^ as novel oxygen electrode for solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2011, 36, 11572-11577.	7.1	45
167	Startup Characteristics of Propane-Fueled Solid Oxide Fuel Cell Hot Zones. ECS Transactions, 2011, 35, 2735-2744.	0.5	0
168	Bi0.5Sr0.5MnO3 as cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 999-1005.	7.8	31
169	Random-packing model for solid oxide fuel cell electrodes with particle size distributions. Journal of Power Sources, 2011, 196, 1983-1991.	7.8	30
170	Ba 1â^'x Co 0.9â^'y Fe y Nb 0.1 O 3â^'δ (x Â=Â0–0.15, y Â=Â0–0.9) as cathode materials for solid oxide fuel c International Journal of Hydrogen Energy, 2011, 36, 9162-9168.	ells. 7.1	67
171	Development and Fabrication of a New Concept Planarâ€ŧubular Solid Oxide Fuel Cell (PTâ€SOFC). Fuel Cells, 2011, 11, 451-458.	2.4	3
172	Ni modified ceramic anodes for direct-methane solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 57-59.	4.7	53
173	Electro-catalytic activity of Dy2O3 as a solid oxide fuel cell anode material. Electrochemistry Communications, 2011, 13, 194-196.	4.7	19
174	BaZr0.1Ce0.7Y0.2O3â~δas an electronic blocking material for microtubular solid oxide fuel cells based on doped ceria electrolyte. Electrochemistry Communications, 2011, 13, 450-453.	4.7	27
175	Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles. Electrochemistry Communications, 2011, 13, 711-713.	4.7	69
176	Synthesis, characterization and evaluation of PrBaCo2â^'xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 3658-3665.	7.1	144
177	La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2011, 36, 3340-3346.	7.1	74
178	Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3ⴴδ electrolyte. Journal of Power Sources, 2011, 196, 688-691.	7.8	68
179	Sm0.2(Ce1â^'xTix)0.8O1.9 modified Ni–yttria-stabilized zirconia anode for direct methane fuel cell. Journal of Power Sources, 2011, 196, 4987-4991.	7.8	37
180	One thousand-hour long term characteristics of a propane-fueled solid oxide fuel cell hot zone. Journal of Power Sources, 2011, 196, 6293-6298.	7.8	9

#	Article	IF	CITATIONS
181	Novel BaCe0.7In0.2Yb0.1O3â^ proton conductor as electrolyte for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 7500-7504.	7.8	24
182	Nano-structured Sm0.5Sr0.5CoO3â^î^ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2011, 192, 591-594.	2.7	41
183	Sm0.2Ce0.8O1.9/Y0.25Bi0.75O1.5 bilayered electrolytes for low-temperature SOFCs with Ag-Y0.25Bi0.75O1.5 composite cathodes. Solid State Ionics, 2011, 192, 557-560.	2.7	20
184	Sintering of Samarium-doped ceria powders prepared by a glycine-nitrate process. Solid State Ionics, 2011, 192, 580-583.	2.7	30
185	Synthesis and electrical conductivity of various melilite-type electrolytes Ln1+xSr1â^xGa3O7+x/2. Solid State Ionics, 2011, 191, 68-72.	2.7	21
186	Sr2Fe1.5Mo0.5O6 as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells with La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte, Journal of the Electrochemical Society, 2011, 158, B455.	2.9	122
187	xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	3.2	16
188	Environmental Effects on a Thermally Self-Sustained SOFC Hot Zone. ECS Transactions, 2011, 35, 297-312.	0.5	1
189	Characteristics of the Hydrogen Electrode in High Temperature Steam Electrolysis Process. Journal of the Electrochemical Society, 2011, 158, B1217.	2.9	30
190	Novel Micro-Tubular High Temperature Solid Oxide Electrolysis Cells. ECS Transactions, 2011, 35, 2987-2995.	0.5	6
191	A Novel Redox Stable Catalytically Active Electrode for Solid Oxide Fuel Cells. ECS Transactions, 2011, 35, 1357-1366.	0.5	15
192	Self-Rising Approach to Synthesize Porous Hollow Metal Oxides. Journal of Nanoscience and Nanotechnology, 2010, 10, 4317-4321.	0.9	2
193	Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochimica Acta, 2010, 55, 3595-3605.	5.2	249
194	Thin film ceria–bismuth bilayer electrolytes for intermediate temperature solid oxide fuel cells with La0.85Sr0.15MnO3â~Îr–Y0.25Bi0.75O1.5 cathodes. Materials Research Bulletin, 2010, 45, 603-608.	5.2	22
195	A Novel Electrode Material for Symmetrical SOFCs. Advanced Materials, 2010, 22, 5478-5482.	21.0	595
196	Self-rising synthesis of Ni–SDC cermets as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195, 1543-1550.	7.8	26
197	Modeling of anode-supported SOFCs with samaria doped-ceria electrolytes operating at 500–600°C. Journal of Power Sources, 2010, 195, 4160-4167.	7.8	22
198	Layered perovskite PrBa0.5Sr0.5Co2O5+l̂´ as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte. Journal of Power Sources, 2010, 195, 5468-5473.	7.8	38

#	Article	IF	CITATIONS
199	Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195, 8071-8074.	7.8	68
200	Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. International Journal of Hydrogen Energy, 2010, 35, 8322-8330.	7.1	106
201	High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen electrode performance. International Journal of Hydrogen Energy, 2010, 35, 3221-3226.	7.1	104
202	Synthesis and characterization of Baln0.3â^'xYxCe0.7O3â^'Î^ (xÂ=Â0, 0.1, 0.2, 0.3) proton conductors. International Journal of Hydrogen Energy, 2010, 35, 4258-4263.	7.1	96
203	Characterization of infiltrated (La0.75Sr0.25)0.95MnO3 as oxygen electrode for solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2010, 35, 5187-5193.	7.1	69
204	Performance of solid oxide fuel cells based on proton-conducting BaCe0.7In0.3-xYxO3-Î′ electrolyte. International Journal of Hydrogen Energy, 2010, 35, 11194-11199.	7.1	39
205	Effects of testing configurations and cell geometries on the performance of a SOFC: A modeling approach. International Journal of Hydrogen Energy, 2010, 35, 10495-10504.	7.1	27
206	Perovskite Sr2Fe1.5Mo0.5O6â^'δ as electrode materials for symmetrical solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2010, 35, 10039-10044.	7.1	166
207	Spin-coating derived solid oxide fuel cells operated at temperatures of 500°C and below. International Journal of Hydrogen Energy, 2010, 35, 13262-13270.	7.1	18
208	Effects on microstructure of NiO–YSZ anode support fabricated by phase-inversion method. Journal of Membrane Science, 2010, 363, 250-255.	8.2	78
209	Micro-tubular solid oxide fuel cells fabricated by phase-inversion method. Electrochemistry Communications, 2010, 12, 657-660.	4.7	76
210	Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer. Electrochemistry Communications, 2010, 12, 1450-1452.	4.7	34
211	Performances of micro-tubular solid oxide cell with novel asymmetric porous hydrogen electrode. Electrochimica Acta, 2010, 56, 80-84.	5.2	30
212	Structure/Property Relations in Bulk Versus Solution Derived Proton Conducting Ceramics of the Form SrCe0.95Yb0.05O3 With Applications in Membrane Separations. Materials Research Society Symposia Proceedings, 2010, 1256, 1.	0.1	0
213	Efficient Thickness of Solid Oxide Fuel Cell Composite Electrode. Chinese Journal of Chemical Physics, 2010, 23, 217-225.	1.3	9
214	Stability and electrical property of Ba1â^'xSrxCe0.8Y0.2O3â^'l´ high temperature proton conductor. Journal of Alloys and Compounds, 2010, 506, 263-267.	5.5	36
215	La[sub 0.85]Sr[sub 0.15]MnO[sub 3â^î] Infiltrated Y[sub 0.5]Bi[sub 1.5]O[sub 3] Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 2009, 12, B91.	2.2	25
216	Self-rising approach to synthesize hierarchically porous metal oxides. Materials Research Bulletin, 2009, 44, 2056-2061.	5.2	11

#	Article	IF	CITATIONS
217	Synthesis and Application of Porous Sm0.2Ce0.8O1.9 Nanocrystal Aggregates. Journal of Physical Chemistry C, 2009, 113, 17262-17267.	3.1	17
218	A high performance intermediate-temperature solid oxide fuel cell using impregnated La0.6Sr0.4CoO3â~Î cathode. Journal of Alloys and Compounds, 2009, 487, 781-785.	5.5	34
219	Novel nano-network cathodes for solid oxide fuel cells. Journal of Power Sources, 2008, 185, 13-18.	7.8	80
220	Surface states in template synthesized tin oxide nanoparticles. Journal of Applied Physics, 2004, 95, 2178-2180.	2.5	24
221	Synthesis of Tin Oxide Nanostructures with Controlled Particle Size Using Mesoporous Frameworks. Electrochemical and Solid-State Letters, 2004, 7, G93.	2.2	21
222	Noble Metal Nanostructures Synthesized inside Mesoporous Nanotemplate Pores. Electrochemical and Solid-State Letters, 2004, 7, J17.	2.2	7
223	Mesoporous catalytic filters for semiconductor gas sensors. Thin Solid Films, 2003, 436, 64-69.	1.8	91
224	Distributions of noble metal Pd and Pt in mesoporous silica. Applied Physics Letters, 2002, 81, 3449-3451.	3.3	45
225	Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics, 2002, 149, 11-19.	2.7	576
226	Reduced-Temperature Solid Oxide Fuel Cells Fabricated by Screen Printing. Electrochemical and Solid-State Letters, 2001, 4, A52.	2.2	192
227	Preparation of Ordered Macroporous Sr0.5Sm0.5CoO3as Cathode for Solid Oxide Fuel Cells. Chemistry Letters, 2001, 30, 1032-1033.	1.3	17
228	Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM–YSZ substrates using an electrophoretic deposition (EPD) process. Journal of the European Ceramic Society, 2001, 21, 127-134.	5.7	127
229	Structural and Electrical Characterization of a Novel Mixed Conductor: CeO[sub 2]-Sm[sub 2]O[sub 3]-ZrO[sub 2] Solid Solution. Journal of the Electrochemical Society, 2000, 147, 4196.	2.9	28
230	Preparation of mesoporous yttria-stabilized zirconia (YSZ) and YSZ–NiO using a triblock copolymer as surfactant. Journal of Materials Chemistry, 2000, 10, 2603-2605.	6.7	16
231	Preparation of mesoporous SnO2–SiO2 composite as electrodes for lithium batteries. Chemical Communications, 2000, , 2095-2096.	4.1	48
232	Preparation of mesoporous tin oxide for electrochemical applications. Chemical Communications, 1999, , 1829-1830.	4.1	120
233	Study of transition metal oxide doped LaGaO 3 as electrode materials for LSGM-based solid oxide fuel cells. Journal of Solid State Electrochemistry, 1998, 3, 7-14.	2.5	43
234	Preparation of Nd-doped BaCeO3 proton-conducting ceramic and its electrical properties in different atmospheres. Journal of the European Ceramic Society, 1998, 18, 1389-1395.	5.7	54

#	Article	IF	CITATIONS
235	Chemical stability study of BaCe0.9Nd0.1O3â~α high-temperature proton-conducting ceramic. Journal of Materials Chemistry, 1997, 7, 481-485.	6.7	80
236	Preparation of Nd-doped BaCeO3 proton-conducting ceramics by homogeneous oxalate coprecipitation. Journal of Materials Chemistry, 1997, 7, 1533-1539.	6.7	22
237	Preparation of Nd-doped barium cerate through different routes. Solid State Ionics, 1997, 100, 63-72.	2.7	29