Sri Sritharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2366606/publications.pdf Version: 2024-02-01

ς δι ς διτηλολη

#	Article	IF	CITATIONS
1	Unbonded Post-Tensioned Structural Masonry Wall with Rubber Interface for Limited-Damage Systems. Journal of Structural Engineering, 2022, 148, .	3.4	5
2	Effects of vertical ground acceleration on the seismic moment demand of bridge superstructure connections. Engineering Structures, 2022, 253, 113820.	5.3	5
3	Seismic behavior of unbonded post-tensioned precast concrete members with thin rubber layers at the jointed connection. PCI Journal, 2021, 66, 60-76.	0.6	7
4	Comparative response of rocking-wall systems with cast-in-place and precast floor systems in buildings. Engineering Structures, 2021, 234, 111942.	5.3	8
5	Performance of circular hollow concrete columns with a single layer of transverse reinforcement. Structures, 2021, 32, 15-27.	3.6	7
6	Wind Energy Potential at Elevated Hub Heights in the US Midwest Region. Journal of Energy Engineering - ASCE, 2021, 147, .	1.9	4
7	Behavior of a Pile Group Supporting a Precast Pile Cap under Combined Vertical and Lateral Loads. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	3.0	1
8	Properties and microstructure of extrusion-based 3D printing mortar containing a highly flowable, rapid set grout. Cement and Concrete Composites, 2021, 124, 104243.	10.7	15
9	Vibration-based damage localization and quantification in a pretensioned concrete girder using stochastic subspace identification and particle swarm model updating. Structural Health Monitoring, 2020, 19, 587-605.	7.5	51
10	Dynamic response and impact energy loss in controlled rocking members. Earthquake Engineering and Structural Dynamics, 2020, 49, 319-338.	4.4	8
11	Outdoor Test of a Prefabricated Column–Pile Cap–Pile System under Combined Vertical and Lateral Loads. Journal of Bridge Engineering, 2020, 25, .	2.9	16
12	Evaluation of Regionally Calibrated Load and Resistance Factor-Design Method Used for Driven-Steel H-Piles. Journal of Bridge Engineering, 2020, 25, .	2.9	1
13	Generalized dynamic analysis of structural single rocking walls (SRWs). Earthquake Engineering and Structural Dynamics, 2020, 49, 633-656.	4.4	9
14	Influence of different damping components on dynamic response of concrete rocking walls. Engineering Structures, 2020, 212, 110468.	5.3	11
15	Evaluating commercial feasibility of a new tall wind tower design concept using a stochastic levelized cost of energy model. Journal of Cleaner Production, 2019, 240, 118001.	9.3	25
16	Effects of confinement in square hollow concrete column sections. Engineering Structures, 2019, 191, 526-535.	5.3	10
17	Quantifying Bonding Characteristics between UHPC and Normal-Strength Concrete for Bridge Deck Application. Journal of Bridge Engineering, 2019, 24, .	2.9	68
18	Side Shear Strength of Preformed Socket Connections Suitable for Vertical Precast Members. Journal of Bridge Engineering, 2019, 24, .	2.9	23

#	Article	IF	CITATIONS
19	UHPC Bridge Deck Overlay in Sioux County, Iowa. , 2019, , .		1
20	UHPC Bridge Deck Overlay $\hat{a} \in \tilde{~}$ Impact of Key Design Variables. , 2019, , .		0
21	Long Span UHPC Double Tees for Building Structures $\hat{a} \in \hat{A}$ A Design Process. , 2019, , .		Ο
22	Effects of Size and Gauge length on the Stress-Strain Response of UHPC in Tension. , 2019, , .		0
23	Seismic-Resistant Precast Concrete Structures: State of the Art. Journal of Structural Engineering, 2018, 144, .	3.4	267
24	First Application of UHPC Bridge Deck Overlay in North America. Transportation Research Record, 2018, 2672, 40-47.	1.9	25
25	Effects of Confinement in Circular Hollow Concrete Columns. Journal of Structural Engineering, 2018, 144, .	3.4	18
26	Dynamic Evaluation of PreWEC Systems with Varying Hysteretic Energy Dissipation. Journal of Structural Engineering, 2018, 144, 04018185.	3.4	8
27	Characterizing Dynamic Decay of Motion of Free-Standing Rocking Members. Earthquake Spectra, 2018, 34, 843-866.	3.1	20
28	Special Collection on Recent Advances in Reinforced Concrete Walls Designed to Resist Seismic Loads. Journal of Structural Engineering, 2018, 144, 02018002.	3.4	0
29	Study of Interaction between a PreWEC System and Surrounding Structure. ACI Structural Journal, 2018, 115, .	0.2	3
30	T-Shaped RC Structural Walls Subjected to Multidirectional Loading: Test Results and Design Recommendations. Journal of Structural Engineering, 2017, 143, .	3.4	19
31	Cyclic testing of unbonded post-tensioned concrete wall systems with and without supplemental damping. Engineering Structures, 2017, 140, 406-420.	5.3	82
32	LRFD guides for driven piles considering pile set-up phenomenon. Geotechnical Research, 2017, 4, 67-81.	1.4	2
33	Single precast concrete rocking walls as earthquake forceâ€resisting elements. Earthquake Engineering and Structural Dynamics, 2017, 46, 753-769.	4.4	54
34	Computational modelling of a four storey post-tensioned concrete building subjected to shake table testing. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50, 595-607.	0.5	6
35	Improved Coefficient of Restitution Estimation for Free Rocking Members. Journal of Structural Engineering, 2016, 142, .	3.4	49
36	Cyclic and seismic response of single piles in improved and unimproved soft clays. Acta Geotechnica, 2016, 11, 1431-1444.	5.7	9

#	Article	IF	CITATIONS
37	Finite element analysis of the PreWEC self-centering concrete wall system. Engineering Structures, 2016, 115, 28-41.	5.3	66
38	Bridge Decks with Precast UHPC Waffle Panels: A Field Evaluation and Design Optimization. Journal of Bridge Engineering, 2016, 21, .	2.9	35
39	Full-Scale Seismic Testing of Piles in Improved and Unimproved Soft Clay. Earthquake Spectra, 2016, 32, 239-265.	3.1	18
40	A procedure for incorporating setup into load and resistance factor design of driven piles. Acta Geotechnica, 2016, 11, 347-358.	5.7	17
41	Residual drift analyses of realistic self-centering concrete wall systems. Earthquake and Structures, 2016, 10, 409-428.	1.0	29
42	Minimum confinement reinforcement for prestressed concrete piles and a rational seismic design framework. PCI Journal, 2016, 61, 51-69.	0.6	1
43	Delamination Assessment of an Ultra-High Performance Concrete Deck Overlay Using Infrared Imaging. , 2016, , .		2
44	A SIMPLE ANALYTICAL MODEL FOR THE ROCKING PREWEC SYSTEM. , 2016, , .		2
45	Design Optimization of Bridge Decks with Precast UHPC Waffle Panels. , 2016, , .		Ο
46	Experimental and Analytical Investigation of UHPC Pile-to-Abutment Connections. , 2016, , .		0
47	Field Investigation of Ultra-High Performance Concrete Piles. , 2016, , .		0
48	Verification of LRFD approach for piles in sand and mixed soils. Soils and Foundations, 2015, 55, 678-690.	3.1	2
49	Precast concrete wall with end columns (PreWEC) for earthquake resistant design. Earthquake Engineering and Structural Dynamics, 2015, 44, 2075-2092.	4.4	123
50	Investigation of ultra high performance concrete piles for integral abutment bridges. Engineering Structures, 2015, 105, 220-230.	5.3	17
51	Girder Load Distribution for Seismic Design of Integral Bridges. Journal of Bridge Engineering, 2015, 20, .	2.9	4
52	Behavior of unbonded post-tensioning monostrand anchorage systems under short duration, high amplitude cyclical loading. Engineering Structures, 2015, 104, 116-125.	5.3	12
53	Seismic response of precast, posttensioned concrete jointed wall systems designed for low- to midrise buildings using the direct displacement-based approach. PCI Journal, 2015, 60, 38-56.	0.6	17
54	A cost effective integral bridge system with precast concrete I-girders for seismic application. PCI Journal, 2015, 60, 76-95.	0.6	3

#	Article	IF	CITATIONS
55	Closure to "Pile Setup in Cohesive Soil. I: Experimental Investigation―by Kam W. Ng, Matthew Roling, Sherif S. AbdelSalam, Muhannad T. Suleiman, and Sri Sritharan. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, 07013004.	3.0	1
56	Understanding Poor Seismic Performance of Concrete Walls and Design Implications. Earthquake Spectra, 2014, 30, 307-334.	3.1	104
57	Closure to "Cyclic Response of Reinforced Concrete Walls with Different Anchorage Details: Experimental Investigation―by Sriram Aaleti, Beth L. Brueggen, Benton Johnson, Catherine E. French, and Sri Sritharan. Journal of Structural Engineering, 2014, 140, 07014004.	3.4	0
58	Integration of construction control and pile setup into load and resistance factor design of piles. Soils and Foundations, 2014, 54, 197-208.	3.1	6
59	Characterization of Seasonally Frozen Soils for Seismic Design of Foundations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, .	3.0	17
60	Effect of low-rise building geometry on tornado-induced loads. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133, 124-134.	3.9	26
61	Design of Ultrahigh-Performance Concrete Waffle Deck for Accelerated Bridge Construction. Transportation Research Record, 2014, 2406, 12-22.	1.9	19
62	Modeling Load-Transfer Behavior of H-Piles Using Direct Shear and Penetration Test Results. Geotechnical Testing Journal, 2014, 37, 20130074.	1.0	5
63	Pile Setup in Cohesive Soil. I: Experimental Investigation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 199-209.	3.0	60
64	Pile Setup in Cohesive Soil. II: Analytical Quantifications and Design Recommendations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 210-222.	3.0	46
65	Cyclic Response of Reinforced Concrete Walls with Different Anchorage Details: Experimental Investigation. Journal of Structural Engineering, 2013, 139, 1181-1191.	3.4	47
66	Improving dynamic soil parameters and advancing the pile signal matching technique. Computers and Geotechnics, 2013, 54, 166-174.	4.7	7
67	Verification of Recommended Load and Resistance Factor Design and Construction of Piles in Cohesive Soils. Transportation Research Record, 2012, 2310, 49-58.	1.9	9
68	Effects of Cold Temperature and Strain Rate on the Stress-Strain Behavior of ASTM A706 Grade 420(60) Steel Reinforcement. Journal of Materials in Civil Engineering, 2012, 24, 1441-1449.	2.9	13
69	Enhanced Load-Transfer Analysis for Friction Piles Using a Modified Borehole Shear Test. Geotechnical Testing Journal, 2012, 35, 20120071.	1.0	9
70	Structural Behavior of Waffle Bridge Deck Panels and Connections of Precast Ultra-High-Performance Concrete. Transportation Research Record, 2011, 2251, 82-92.	1.9	18
71	Load and Resistance Factor Design Calibration for Bridge Pile Foundations. Transportation Research Record, 2011, 2204, 233-241.	1.9	3
72	Introduction to PILOT Database and Establishment of LRFD Resistance Factors for the Construction Control of Driven Steel H-Piles. Journal of Bridge Engineering, 2011, 16, 728-738.	2.9	18

#	Article	IF	CITATIONS
73	LRFD Resistance Factors for Design of Driven H-Piles in Layered Soils. Journal of Bridge Engineering, 2011, 16, 739-748.	2.9	16
74	Investigation of LRFD Resistance Factors with Consideration to Soil Variability along the Pile Length. , 2011, , .		0
75	Seismic Performance of a Concrete Bridge Bent Consisting of Three Steel Shell Columns. Earthquake Spectra, 2011, 27, 107-132.	3.1	6
76	Modelling the response of cyclically loaded bridge columns embedded in warm and seasonally frozen soils. Engineering Structures, 2010, 32, 933-943.	5.3	31
77	Behavior of Driven Ultrahigh-Performance Concrete H-Piles Subjected to Vertical and Lateral Loadings. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 1403-1413.	3.0	18
78	Investigation on the Impact of Seasonally Frozen Soil on Seismic Response of Bridge Columns. Journal of Bridge Engineering, 2010, 15, 473-481.	2.9	18
79	LRFD Resistance Factors Including the Influence of Pile Setup for Design of Steel H-Pile Using WEAP. , 2010, , .		2
80	Concept and Finite-Element Modeling of New Steel Shear Connectors for Self-Centering Wall Systems. Journal of Engineering Mechanics - ASCE, 2010, 136, 220-229.	2.9	36
81	Lessons Learned from Seismic Analysis of a Seven-Story Concrete Test Building. Journal of Earthquake Engineering, 2010, 14, 448-469.	2.5	23
82	Current Design and Construction Practices of Bridge Pile Foundations with Emphasis on Implementation of LRFD. Journal of Bridge Engineering, 2010, 15, 749-758.	2.9	37
83	Characterization of Precast UHPC Pile Drivability. , 2009, , .		2
84	A simplified analysis method for characterizing unbonded post-tensioned precast wall systems. Engineering Structures, 2009, 31, 2966-2975.	5.3	103
85	Strut-and-Tie Nonlinear Cyclic Analysis of Concrete Frames. Journal of Structural Engineering, 2009, 135, 1259-1268.	3.4	7
86	Lateral Load Response of a Reaction Column-Foundation System in Different Temperature Conditions. , 2009, , .		0
87	"Underlying―Causes for Settlement of Bridge Approach Pavement Systems. Journal of Performance of Constructed Facilities, 2007, 21, 273-282.	2.0	41
88	Performance of collapsible bridge approach backfill with geosynthetic drainage and reinforcement. Geosynthetics International, 2007, 14, 76-88.	2.9	3
89	Effects of Seasonal Freezing on Bridge Column–Foundation–Soil Interaction and Their Implications. Earthquake Spectra, 2007, 23, 199-222.	3.1	46
90	Performance-Based Seismic Evaluation of Two Five-Story Precast Concrete Hybrid Frame Buildings. Journal of Structural Engineering, 2007, 133, 1489-1500.	3.4	49

#	Article	IF	CITATIONS
91	An evaluation of force-based design vs. direct displacement-based design of jointed precast post-tensioned wall systems. Earthquake Engineering and Engineering Vibration, 2006, 5, 285-296.	2.3	34
92	Cyclic Lateral Load Response of Bridge Column-Foundation-Soil Systems in Freezing Conditions. Journal of Structural Engineering, 2006, 132, 1745-1754.	3.4	47
93	Seismic Behavior of a Concrete/Steel Integral Bridge Pier System. Journal of Structural Engineering, 2005, 131, 1083-1094.	3.4	8
94	Strut-and-Tie Analysis of Bridge Tee Joints Subjected to Seismic Actions. Journal of Structural Engineering, 2005, 131, 1321-1333.	3.4	7
95	Improved Seismic Design Procedure for Concrete Bridge Joints. Journal of Structural Engineering, 2005, 131, 1334-1344.	3.4	5
96	STRUT-AND-TIE COMPUTER MODELLING OF REINFORCED CONCRETE BRIDGE JOINT SYSTEMS. Journal of Earthquake Engineering, 2003, 7, 463-493.	2.5	3
97	Application of Strut-and-Tie Concepts to Concrete Bridge Joints in Seismic Regions. PCI Journal, 2003, 48, 66-90.	0.6	12
98	Strut-and-tie computer modelling of reinforced concrete bridge portal frames. Bulletin of the New Zealand Society for Earthquake Engineering, 2002, 35, 165-189.	0.5	1
99	Title is missing!. Journal of Earthquake Engineering, 2001, 5, 329.	2.5	25
100	Monotonic non-linear analysis of reinforced concrete knee joints using strut-and-tie computer models. Bulletin of the New Zealand Society for Earthquake Engineering, 2001, 34, 169-190.	0.5	12
101	Nonlinear finite element analyses of concrete bridge joint systems subjected to seismic actions. Finite Elements in Analysis and Design, 2000, 36, 215-233.	3.2	23
102	Preliminary Results and Conclusions From the PRESSS Five-Story Precast Concrete Test Building. PCI Journal, 1999, 44, 42-67.	0.6	571
103	Creep and shrinkage effects in prestressed beams. Magazine of Concrete Research, 1995, 47, 45-55.	2.0	0
104	Lateral response of underground pipelines to earthquakes. Computers and Structures, 1994, 53, 601-611.	4.4	1
105	Response of low-rise buildings to moderate ground shaking, particularly the May 1990 Weber earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 1994, 27, 205-221.	0.5	0
106	Peak ground accelerations recorded in the 1968 Inangahua earthquake and some attenuation implications. Bulletin of the New Zealand Society for Earthquake Engineering, 1993, 26, 349-355.	0.5	7
107	Attenuation of peak ground accelerations in some recent New Zealand earthquakes. Bulletin of the New Zealand Society for Earthquake Engineering, 1993, 26, 3-13.	0.5	11
108	Microzone effects in the Hutt Valley in records from a strong-motion accelerograph array. Bulletin of the New Zealand Society for Earthquake Engineering, 1992, 25, 246-264.	0.5	9