
Morgan Huse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2366583/publications.pdf Version: 2024-02-01

MORCAN HUSE

#	Article	IF	CITATIONS
1	HLA-independent T cell receptors for targeting tumors with low antigen density. Nature Medicine, 2022, 28, 345-352.	15.2	73
2	Harder, better, faster, stronger: biochemistry and biophysics in the immunosurveillance concert. Trends in Immunology, 2022, 43, 96-105.	2.9	4
3	TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. Journal of Experimental Medicine, 2022, 219, .	4.2	64
4	Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nature Communications, 2022, 13, .	5.8	27
5	Cytotoxic lymphocytes target characteristic biophysical vulnerabilities in cancer. Immunity, 2021, 54, 1037-1054.e7.	6.6	56
6	Ectopic activation of the miR-200c–EpCAM axis enhances antitumor T cell responses in models of adoptive cell therapy. Science Translational Medicine, 2021, 13, eabg4328.	5.8	8
7	Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions. Nature Communications, 2020, 11, 20.	5.8	101
8	Modulating T Cell Activation Using Depth Sensing Topographic Cues. Advanced Biology, 2020, 4, 2000143.	3.0	8
9	Interdomain spacing and spatial configuration drive the potency of IgG-[L]-scFv T cell bispecific antibodies. Science Translational Medicine, 2020, 12, .	5.8	54
10	Centrioles control the capacity, but not the specificity, of cytotoxic T cell killing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4310-4319.	3.3	23
11	Actin clearance promotes polarized dynein accumulation at the immunological synapse. PLoS ONE, 2019, 14, e0210377.	1.1	27
12	T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19835-19840.	3.3	64
13	Cytomegalovirus Infection Drives Avidity Selection of Natural Killer Cells. Immunity, 2019, 50, 1381-1390.e5.	6.6	42
14	Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells. Science Immunology, 2019, 4, .	5.6	93
15	CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature, 2019, 568, 112-116.	13.7	408
16	Spatial and Temporal Control of T Cell Activation Using a Photoactivatable Agonist. Journal of Visualized Experiments, 2018, , .	0.2	5
17	Probing Synaptic Biomechanics Using Micropillar Arrays. Methods in Molecular Biology, 2017, 1584, 333-346.	0.4	7
18	Sorting nexin 27 interactome in Tâ€lymphocytes identifies zona occludensâ€2 dynamic redistribution at the immune synapse. Traffic, 2017, 18, 491-504.	1.3	18

Morgan Huse

#	Article	IF	CITATIONS
19	A Tunable Diffusion-Consumption Mechanism of Cytokine Propagation Enables Plasticity in Cell-to-Cell Communication in the Immune System. Immunity, 2017, 46, 609-620.	6.6	136
20	Mechanical Communication at the Immunological Synapse. Trends in Cell Biology, 2017, 27, 241-254.	3.6	87
21	Mechanical forces in the immune system. Nature Reviews Immunology, 2017, 17, 679-690.	10.6	297
22	Successful engineering of a highly potent single-chain variable-fragment (scFv) bispecific antibody to target disialoganglioside (GD2) positive tumors. Oncolmmunology, 2016, 5, e1168557.	2.1	30
23	Cancer Immunosurveillance by Tissue-Resident Innate Lymphoid Cells and Innate-like T Cells. Cell, 2016, 164, 365-377.	13.5	276
24	Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing. Cell, 2016, 165, 100-110.	13.5	329
25	Retargeting T Cells to GD2 Pentasaccharide on Human Tumors Using Bispecific Humanized Antibody. Cancer Immunology Research, 2015, 3, 266-277.	1.6	74
26	A Generalizable Platform for the Photoactivation of Cell Surface Receptors. ACS Chemical Biology, 2015, 10, 2435-2440.	1.6	3
27	Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse. Cellular and Molecular Life Sciences, 2015, 72, 537-556.	2.4	77
28	Immunological Synapse Formation: Cell Polarity During T Cell–APC Interaction. , 2015, , 247-275.		4
29	Lipid-based patterning of the immunological synapse. Biochemical Society Transactions, 2014, 42, 1506-1511.	1.6	12
30	Diacylglycerol kinase α establishes T cell polarity by shaping diacylglycerol accumulation at the immunological synapse. Science Signaling, 2014, 7, ra82.	1.6	72
31	CD28 and CD3 have complementary roles in T-cell traction forces. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2241-2246.	3.3	211
32	The Variable Hinge Region of Novel PKCs Determines Localization to Distinct Regions of the Immunological Synapse. PLoS ONE, 2014, 9, e95531.	1.1	8
33	From lipid second messengers to molecular motors: microtubuleâ€organizing center reorientation in T cells. Immunological Reviews, 2013, 256, 95-106.	2.8	30
34	Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse. Journal of Experimental Medicine, 2013, 210, 2721-2737.	4.2	113
35	Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells. Immunological Reviews, 2013, 251, 143-153.	2.8	11
36	Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11976-11981.	3.3	86

Morgan Huse

#	Article	IF	CITATIONS
37	Inhibitory Receptor Signaling Destabilizes Immunological Synapse Formation in Primary NK Cells. Frontiers in Immunology, 2013, 4, 410.	2.2	11
38	Microtubule-organizing center polarity and the immunological synapse: protein kinase C and beyond. Frontiers in Immunology, 2012, 3, 235.	2.2	67
39	Protein Kinase C-Î, Clustering at Immunological Synapses Amplifies Effector Responses in NK Cells. Journal of Immunology, 2012, 189, 4859-4869.	0.4	12
40	A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nature Immunology, 2011, 12, 647-654.	7.0	157
41	Lymphocyte polarity, the immunological synapse and the scope of biological analogy. Bioarchitecture, 2011, 1, 180-185.	1.5	8
42	Inhibitory signaling blocks activating receptor clustering and induces cytoskeletal retraction in natural killer cells. Journal of Cell Biology, 2011, 192, 675-690.	2.3	71
43	Photochemical approaches to Tâ€cell activation. Immunology, 2010, 130, 151-157.	2.0	6
44	The T-cell-receptor signaling network. Journal of Cell Science, 2009, 122, 1269-1273.	1.2	114
45	Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nature Immunology, 2009, 10, 627-635.	7.0	222
46	Shouts, whispers and the kiss of death: directional secretion in T cells. Nature Immunology, 2008, 9, 1105-1111.	7.0	184
47	Spatial and Temporal Dynamics of T Cell Receptor Signaling with a Photoactivatable Agonist. Immunity, 2007, 27, 76-88.	6.6	218
48	T cells use two directionally distinct pathways for cytokine secretion. Nature Immunology, 2006, 7, 247-255.	7.0	396