Sandrine Marchais-Oberwinkler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2366560/publications.pdf

Version: 2024-02-01

SANDRINE

#	Article	IF	CITATIONS
1	17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: Protein structures, functions, and recent progress in inhibitor development. Journal of Steroid Biochemistry and Molecular Biology, 2011, 125, 66-82.	2.5	181
2	Substituted 6-Phenyl-2-naphthols. Potent and Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1): Design, Synthesis, Biological Evaluation, and Pharmacokinetics. Journal of Medicinal Chemistry, 2008, 51, 4685-4698.	6.4	59
3	New Drug-Like Hydroxyphenylnaphthol Steroidomimetics As Potent and Selective 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors for the Treatment of Estrogen-Dependent Diseases. Journal of Medicinal Chemistry, 2011, 54, 534-547.	6.4	50
4	Development of a biological screening system for the evaluation of highly active and selective 17β-HSD1-inhibitors as potential therapeutic agents. Molecular and Cellular Endocrinology, 2009, 301, 154-157.	3.2	45
5	Introduction of an Electron Withdrawing Group on the Hydroxyphenylnaphthol Scaffold Improves the Potency of 17β-Hydroxysteroid Dehydrogenase Type 2 (17I²-HSD2) Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 7547-7557.	6.4	41
6	17β-HSD2 inhibitors for the treatment of osteoporosis: Identification of a promising scaffold. Bioorganic and Medicinal Chemistry, 2011, 19, 807-815.	3.0	40
7	Novel estrone mimetics with high 17β-HSD1 inhibitory activity. Bioorganic and Medicinal Chemistry, 2010, 18, 3494-3505.	3.0	29
8	Hydroxybenzothiazoles as New Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1). PLoS ONE, 2012, 7, e29252.	2.5	29
9	Structure–activity study in the class of 6-(3′-hydroxyphenyl)naphthalenes leading to an optimization of a pharmacophore model for 17l²-hydroxysteroid dehydrogenase type 1 (17l²-HSD1) inhibitors. Molecular and Cellular Endocrinology, 2009, 301, 205-211.	3.2	28
10	Discovery of a new class of bicyclic substituted hydroxyphenylmethanones as 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2) inhibitors for the treatment of osteoporosis. European Journal of Medicinal Chemistry, 2012, 47, 1-17.	5.5	26
11	Structural Optimization of 2,5-Thiophene Amides as Highly Potent and Selective 17β-Hydroxysteroid Dehydrogenase Type 2 Inhibitors for the Treatment of Osteoporosis. Journal of Medicinal Chemistry, 2013, 56, 167-181.	6.4	22
12	Metabolic stability optimization and metabolite identification of 2,5-thiophene amide 17β-hydroxysteroid dehydrogenase type 2 inhibitors. European Journal of Medicinal Chemistry, 2014, 87, 203-219.	5.5	17
13	Lead Optimization of 17β-HSD1 Inhibitors of the (Hydroxyphenyl)naphthol Sulfonamide Type for the Treatment of Endometriosis. Journal of Medicinal Chemistry, 2012, 55, 3307-3318.	6.4	16
14	Novel, potent and selective 17β-hydroxysteroid dehydrogenase type 2 inhibitors as potential therapeutics for osteoporosis with dual human and mouse activities. European Journal of Medicinal Chemistry, 2014, 83, 317-337.	5.5	16
15	Novel N-methylsulfonamide and retro-N-methylsulfonamide derivatives as 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2) inhibitors with good ADME-related physicochemical parameters. European Journal of Medicinal Chemistry, 2013, 69, 201-215.	5.5	15
16	Synthesis and Biological Evaluation of Phenyl Substituted 1 <i>H</i> â€1,2,4â€Triazoles as Nonâ€Steroidal Inhibitors of 17βâ€Hydroxysteroid Dehydrogenase Type 2. Archiv Der Pharmazie, 2012, 345, 610-621.	4.1	12
17	New Insights into Human 17β-Hydroxysteroid Dehydrogenase Type 14: First Crystal Structures in Complex with a Steroidal Ligand and with a Potent Nonsteroidal Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 6961-6967.	6.4	12
18	First Structure–Activity Relationship of 17β-Hydroxysteroid Dehydrogenase Type 14 Nonsteroidal Inhibitors and Crystal Structures in Complex with the Enzyme. Journal of Medicinal Chemistry, 2016, 59, 10719-10737.	6.4	12

SANDRINE

#	Article	IF	CITATIONS
19	Synthesis and Biological Evaluation of Spiro-δ-lactones as Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 2 (17β-HSD2). Letters in Drug Design and Discovery, 2011, 8, 406-421.	0.7	11
20	17β-Hydroxysteroid Dehydrogenase Type 2 Inhibition: Discovery of Selective and Metabolically Stable Compounds Inhibiting Both the Human Enzyme and Its Murine Ortholog. PLoS ONE, 2015, 10, e0134754.	2.5	10
21	Highly Potent 17β-HSD2 Inhibitors with a Promising Pharmacokinetic Profile for Targeted Osteoporosis Therapy. Journal of Medicinal Chemistry, 2018, 61, 10724-10738.	6.4	9
22	Structure-based design and profiling of novel 17β-HSD14 inhibitors. European Journal of Medicinal Chemistry, 2018, 155, 61-76.	5.5	9
23	Design, Synthesis, and Biological Characterization of Orally Active 17β-Hydroxysteroid Dehydrogenase Type 2 Inhibitors Targeting the Prevention of Osteoporosis. Journal of Medicinal Chemistry, 2019, 62, 7289-7301.	6.4	7
24	Addressing cytotoxicity of 1,4-biphenyl amide derivatives: Discovery of new potent and selective 17β-hydroxysteroid dehydrogenase type 2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 21-24.	2.2	6
25	Mutational and structural studies uncover crucial amino acids determining activity and stability of 17β-HSD14. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 135-144.	2.5	6
26	Effects of 17β-HSD2 inhibition in bones on osteoporosis based on an animal rat model. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105405.	2.5	5
27	Targeted Endocrine Therapy: Design, Synthesis, and Proof-of-Principle of 17β-Hydroxysteroid Dehydrogenase Type 2 Inhibitors in Bone Fracture Healing. Journal of Medicinal Chemistry, 2019, 62, 1362-1372.	6.4	5
28	Homology modeling meets site-directed mutagenesis: An ideal combination to elucidate the topology of 17β-HSD2. Journal of Steroid Biochemistry and Molecular Biology, 2021, 206, 105790.	2.5	3
29	17β-Hydroxysteroid Dehydrogenase Type 1 Inhibition: A Potential Treatment Option for Non-Small Cell Lung Cancer. ACS Medicinal Chemistry Letters, 2021, 12, 1920-1924.	2.8	3