
N. Selvakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2365455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sprayable PEDOT:PSS based spectrally selective coating for solar energy harvesting. Solar Energy Materials and Solar Cells, 2021, 221, 110906.	6.2	8
2	Sprayable reduced graphene oxide based highâ€ŧemperature solar absorber coatings for concentrated solar power applications. International Journal of Energy Research, 2021, 45, 21487-21496.	4.5	3
3	Design and Development of a Hybrid Broadband Radar Absorber Using Metamaterial and Graphene. IEEE Transactions on Antennas and Propagation, 2019, 67, 5446-5452.	5.1	28
4	Enhanced optical absorption of graphene-based heat mirror with tunable spectral selectivity. Solar Energy Materials and Solar Cells, 2018, 186, 149-153.	6.2	45
5	Design and development of ITO/Ag/ITO spectral beam splitter coating for photovoltaic-thermoelectric hybrid systems. Solar Energy, 2017, 141, 118-126.	6.1	75
6	Role of component layers in designing carbon nanotubes-based tandem absorber on metal substrates for solar thermal applications. Solar Energy Materials and Solar Cells, 2016, 155, 397-404.	6.2	8
7	Controlled growth of high-quality graphene using hot-filament chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	8
8	Nanometer thick tunable AlHfN coating for solar thermal applications: Transition from absorber to antireflection coating. Solar Energy Materials and Solar Cells, 2015, 137, 219-226.	6.2	13
9	Optical simulation and fabrication of HfMoN/HfON/Al2O3 spectrally selective coating. Solar Energy Materials and Solar Cells, 2015, 140, 328-334.	6.2	16
10	AlMoN based spectrally selective coating with improved thermal stability for high temperature solar thermal applications. Solar Energy, 2015, 119, 114-121.	6.1	17
11	Carbon Nanotubeâ€Based Tandem Absorber with Tunable Spectral Selectivity: Transition from Nearâ€Perfect Blackbody Absorber to Solar Selective Absorber. Advanced Materials, 2014, 26, 2552-2557.	21.0	95
12	Spectrally selective CrMoN/CrON tandem absorber for mid-temperature solar thermal applications. Solar Energy Materials and Solar Cells, 2013, 109, 97-103.	6.2	35
13	Vapor–Solid Growth of Molybdenum Oxide Nanowhiskers: Wettability Studies and Growth Process. Nanoscience and Nanotechnology Letters, 2013, 5, 842-849.	0.4	1
14	Indigenous development of ultra high vacuum (UHV) magnetron sputtering system for the preparation of Permalloy magnetic thin films. Journal of Physics: Conference Series, 2012, 390, 012081.	0.4	0
15	Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications. Solar Energy Materials and Solar Cells, 2012, 98, 1-23.	6.2	531
16	Design and fabrication of highly thermally stable HfMoN/HfON/Al2O3 tandem absorber for solar thermal power generation applications. Solar Energy Materials and Solar Cells, 2012, 102, 86-92.	6.2	79
17	Wettability of ZnO: A comparison of reactively sputtered; thermally oxidized and vacuum annealed coatings. Applied Surface Science, 2011, 257, 4410-4417.	6.1	21
18	Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers. Solar Energy Materials and Solar Cells, 2010, 94, 1412-1420.	6.2	107

N. Selvakumar

#	Article	IF	CITATIONS
19	Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobic polytetrafluoroethylene coatings: A comparison of experimental data with different theoretical models. Journal of Applied Physics, 2010, 108, .	2.5	53
20	Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings. Solar Energy Materials and Solar Cells, 2009, 93, 315-323.	6.2	79
21	Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobic polytetrafluoroethylene thin films. Applied Physics Letters, 2009, 95, 033116.	3.3	29
22	Spectrally selective NbAlN/NbAlON/Si3N4 tandem absorber for high-temperature solar applications. Solar Energy Materials and Solar Cells, 2008, 92, 495-504.	6.2	87
23	Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering. Solar Energy Materials and Solar Cells, 2008, 92, 1425-1433.	6.2	91
24	Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering. Thin Solid Films, 2008, 516, 6071-6078.	1.8	89
25	Spectroscopic ellipsometric characterization of TiAlN/TiAlON/Si3N4 tandem absorber for solar selective applications. Applied Surface Science, 2008, 254, 1694-1699.	6.1	73
26	The structural and electrical properties of TiO2 thin films prepared by thermal oxidation. Physica B: Condensed Matter, 2008, 403, 3718-3723.	2.7	42
27	Structure and optical properties of pulsed sputter deposited CrxOyâ^•Crâ^•Cr2O3 solar selective coatings. Journal of Applied Physics, 2008, 103, .	2.5	89
28	Investigation of interface properties of sputter deposited TiN/CrN superlattices by low angle x-ray reflectivity. Journal Physics D: Applied Physics, 2008, 41, 205409.	2.8	12
29	Thermal stability of TiAlNâ^•TiAlONâ^•Si3N4 tandem absorbers prepared by reactive direct current magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 383-390.	2.1	37
30	Nanolayered multilayer coatings of CrN/CrAlN prepared by reactive DC magnetron sputtering. Applied Surface Science, 2007, 253, 5076-5083.	6.1	78
31	TiAlNâ^•TiAlONâ^•Si3N4 tandem absorber for high temperature solar selective applications. Applied Physics Letters, 2006, 89, 191909.	3.3	119
32	A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings. Surface and Coatings Technology, 2006, 201, 2193-2201.	4.8	282