Jinhee Jo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2365434/publications.pdf

Version: 2024-02-01

71102 110387 5,181 160 41 64 citations h-index g-index papers 168 168 168 7378 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A reusable Gemini surfactant-based electrochemical sensor for As(III) detection. International Journal of Environmental Analytical Chemistry, 2023, 103, 9036-9047.	3.3	2
2	A stable naked-eye colorimetric sensor for monitoring release of extracellular gamma-aminobutyric acid (GABA) neurotransmitter from SH-SY5Y cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120517.	3.9	5
3	Bionanohybrid composed of metalloprotein/DNA/MoS2/peptides to control the intracellular redox states of living cells and its applicability as a cell-based biomemory device. Biosensors and Bioelectronics, 2022, 196, 113725.	10.1	6
4	Fabrication of MERS-nanovesicle biosensor composed of multi-functional DNA aptamer/graphene-MoS2 nanocomposite based on electrochemical and surface-enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 2022, 352, 131060.	7.8	34
5	DNA–Gold Nanoparticle Conjugates for Intracellular miRNA Detection Using Surface-Enhanced Raman Spectroscopy. Biochip Journal, 2022, 16, 33-40.	4.9	16
6	Fabrication of Hollow Nanocones Membrane with an Extraordinary Surface Area as CO2 Sucker. Polymers, 2022, 14, 183.	4. 5	3
7	RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. Journal of Controlled Release, 2022, 342, 228-240.	9.9	16
8	Electrophysiological Monitoring of Neurochemical-Based Neural Signal Transmission in a Human Brain–Spinal Cord Assembloid. ACS Sensors, 2022, 7, 409-414.	7.8	12
9	Actuation-Augmented Biohybrid Robot by Hyaluronic Acid-Modified Au Nanoparticles in Muscle Bundles to Evaluate Drug Effects. ACS Sensors, 2022, 7, 740-747.	7.8	15
10	Modified Industrial Three-Dimensional Polylactic Acid Scaffold Cell Chip Promotes the Proliferation and Differentiation of Human Neural Stem Cells. International Journal of Molecular Sciences, 2022, 23, 2204.	4.1	3
11	Receptorâ€Level Proximity and Fastening of Ligands Modulates Stem Cell Differentiation. Advanced Functional Materials, 2022, 32, .	14.9	11
12	Ultrasensitive Electrochemical Detection of Mutated Viral RNAs with Single-Nucleotide Resolution Using a Nanoporous Electrode Array (NPEA). ACS Nano, 2022, 16, 5764-5777.	14.6	20
13	Biomolecular Electron Controller Composed of Nanobiohybrid with Electrically Released Complex for Spatiotemporal Control of Neuronal Differentiation. Small Methods, 2022, 6, 2100912.	8.6	4
14	Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosensors and Bioelectronics, 2022, 212, 114427.	10.1	10
15	CRISPR-Cas12a-Based Nucleic Acid Amplification-Free DNA Biosensor via Au Nanoparticle-Assisted Metal-Enhanced Fluorescence and Colorimetric Analysis. Nano Letters, 2021, 21, 693-699.	9.1	221
16	Hybrid Grapheneâ€Gold Nanoparticleâ€Based Nucleic Acid Conjugates for Cancerâ€Specific Multimodal Imaging and Combined Therapeutics. Advanced Functional Materials, 2021, 31, 2006918.	14.9	55
17	Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells. Cancers, 2021, 13, 1385.	3.7	18
18	Electrochemical Cell Chips Based on Functionalized Nanometals. Frontiers in Chemistry, 2021, 9, 671922.	3 . 6	0

#	Article	IF	Citations
19	Drug Evaluation Based on a Multi-Channel Cell Chip with a Horizontal Co-Culture. International Journal of Molecular Sciences, 2021, 22, 6997.	4.1	4
20	Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis. Biomedicines, 2021, 9, 928.	3.2	21
21	Sensitive and Direct Optical Monitoring of Release and Cellular Uptake of Aqueous CO from CO-Releasing Molecules. Analytical Chemistry, 2021, 93, 9927-9932.	6.5	3
22	Clustered Regularly Interspaced Short Palindromic Repeats-Mediated Amplification-Free Detection of Viral DNAs Using Surface-Enhanced Raman Spectroscopy-Active Nanoarray. ACS Nano, 2021, 15, 13475-13485.	14.6	71
23	Electrochemical Microbiosensor for Detecting COVID-19 in a Patient Sample Based on Gold Microcuboids Pattern. Biochip Journal, 2021, 15, 287-295.	4.9	42
24	Magnetic Control and Realâ€Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly. Small, 2021, 17, e2102892.	10.0	22
25	Graphene/MoS2 Nanohybrid for Biosensors. Materials, 2021, 14, 518.	2.9	25
26	Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanoparticle-enhanced Raman spectroscopy to detect î³-aminobutyric acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117890.	3.9	20
27	In Vitro Blood–Brain Barrier-Integrated Neurological Disorder Models Using a Microfluidic Device. Micromachines, 2020, 11, 21.	2.9	19
28	Recent Advances in MXene Nanocomposite-Based Biosensors. Biosensors, 2020, 10, 185.	4.7	57
29	Flexible Electronics for Monitoring in vivo Electrophysiology and Metabolite Signals. Frontiers in Chemistry, 2020, 8, 547591.	3.6	4
30	<i>In Situ</i> Detection of Neurotransmitters from Stem Cell-Derived Neural Interface at the Single-Cell Level via Graphene-Hybrid SERS Nanobiosensing. Nano Letters, 2020, 20, 7670-7679.	9.1	46
31	Applications of Bionano Sensor for Extracellular Vesicles Analysis. Materials, 2020, 13, 3677.	2.9	9
32	Droplet-based Synthesis of Homogeneous Gold Nanoparticles for Enhancing HRP-based ELISA Signals. Biochip Journal, 2020, 14, 298-307.	4.9	19
33	Metal-Enhanced Fluorescence by Bifunctional Au Nanoparticles for Highly Sensitive and Simple Detection of Proteolytic Enzyme. Nano Letters, 2020, 20, 7100-7107.	9.1	60
34	Surface-Modified Industrial Acrylonitrile Butadiene Styrene 3D Scaffold Fabrication by Gold Nanoparticle for Drug Screening. Nanomaterials, 2020, 10, 529.	4.1	8
35	Nanobiohybrid Materialâ€Based Bioelectronic Devices. Biotechnology Journal, 2020, 15, e1900347.	3.5	13
36	Noble Metal-Assisted Surface Plasmon Resonance Immunosensors. Sensors, 2020, 20, 1003.	3.8	33

#	Article	IF	Citations
37	Combinatorial biophysical cue sensor array for controlling neural stem cell fate. Biosensors and Bioelectronics, 2020, 156, 112125.	10.1	20
38	Application of Conducting Polymer Nanostructures to Electrochemical Biosensors. Molecules, 2020, 25, 307.	3.8	66
39	Highly Sensitive Biosensors Based on Biomolecules and Functional Nanomaterials Depending on the Types of Nanomaterials: A Perspective Review. Materials, 2020, 13, 299.	2.9	70
40	Metallic Nanoparticle-Based Optical Cell Chip for Nondestructive Monitoring of Intra/Extracellular Signals. Pharmaceutics, 2020, 12, 50.	4.5	1
41	Microfluidic System to Analyze the Effects of Interleukin 6 on Lymphatic Breast Cancer Metastasis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611802.	4.1	17
42	Nanosheet composed of gold nanoparticle/graphene/epoxy resin based on ultrasonic fabrication for flexible dopamine biosensor using surface-enhanced Raman spectroscopy. Nano Convergence, 2020, 7, 15.	12.1	41
43	H2O2 biosensor consisted of hemoglobin-DNA conjugate on nanoporous gold thin film electrode with electrochemical signal enhancement. Nano Convergence, 2019, 6, 1.	12.1	75
44	Label-free detection of \hat{I}^3 -aminobutyric acid based on silicon nanowire biosensor. Nano Convergence, 2019, 6, 13.	12.1	39
45	Flexible HIV-1 Biosensor Based on the Au/MoS2 Nanoparticles/Au Nanolayer on the PET Substrate. Nanomaterials, 2019, 9, 1076.	4.1	34
46	Nondestructive Characterization of Stem Cell Neurogenesis by a Magneto-Plasmonic Nanomaterial-Based Exosomal miRNA Detection. ACS Nano, 2019, 13, 8793-8803.	14.6	65
47	Dual-Enhanced Raman Scattering-Based Characterization of Stem Cell Differentiation Using Graphene-Plasmonic Hybrid Nanoarray. Nano Letters, 2019, 19, 8138-8148.	9.1	59
48	Magnetic-Assisted Cell Alignment within a Magnetic Nanoparticle-Decorated Reduced Graphene Oxide/Collagen 3D Nanocomposite Hydrogel. Nanomaterials, 2019, 9, 1293.	4.1	33
49	Resistive switching biodevice composed of MoS2-DNA heterolayer on the gold electrode. Applied Surface Science, 2019, 478, 134-141.	6.1	28
50	Multifunctional Nanobiohybrid Material Composed of Ag@Bi ₂ Se ₃ /RNA Three-Way Junction/miRNA/Retinoic Acid for Neuroblastoma Differentiation. ACS Applied Materials & Interfaces, 2019, 11, 8779-8788.	8.0	20
51	Flexible electrochemical glucose biosensor based on GOx/gold/MoS2/gold nanofilm on the polymer electrode. Biosensors and Bioelectronics, 2019, 140, 111343.	10.1	83
52	Tumor Homing Reactive Oxygen Species Nanoparticle for Enhanced Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23909-23918.	8.0	27
53	Development of Bioelectronic Devices Using Bionanohybrid Materials for Biocomputation System. Micromachines, 2019, 10, 347.	2.9	11
54	High selective spectroelectrochemical biosensor for HCV-RNA detection based on a specific peptide nucleic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 217, 288-293.	3.9	22

#	Article	IF	Citations
55	Electrical Property of Graphene and Its Application to Electrochemical Biosensing. Nanomaterials, 2019, 9, 297.	4.1	88
56	Electrochemical Dopamine Biosensor Composed of Silver Encapsulated MoS2 Hybrid Nanoparticle. Biotechnology and Bioprocess Engineering, 2019, 24, 135-144.	2.6	41
57	pH controlled synthesis of porous graphene sphere and application to supercapacitors. Advanced Powder Technology, 2019, 30, 18-22.	4.1	11
58	Magnetic Oleosome as a Functional Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Lipophilic Drug Carrier for Carrier for	8.0	42
59	Electrochemical Biosensor Composed of Silver Ionâ€Mediated dsDNA on Auâ€Encapsulated Bi ₂ Se ₃ Nanoparticles for the Detection of H ₂ O ₂ Released from Breast Cancer Cells. Small, 2018, 14, e1703970.	10.0	74
60	Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern. Journal of Biotechnology, 2018, 274, 40-46.	3.8	24
61	Subtyping of Magnetically Isolated Breast Cancer Cells Using Magnetic Force Microscopy. Biotechnology Journal, 2018, 13, 1700625.	3.5	8
62	Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging. Biosensors and Bioelectronics, 2018, 102, 372-382.	10.1	50
63	Application of Plasmonic Gold Nanoparticle for Drug Delivery System. Current Drug Targets, 2018, 19, 271-278.	2.1	23
64	Nondestructive Realâ€Time Monitoring of Enhanced Stem Cell Differentiation Using a Grapheneâ€Au Hybrid Nanoelectrode Array. Advanced Materials, 2018, 30, e1802762.	21.0	44
65	Application of Gold Nanoparticle to Plasmonic Biosensors. International Journal of Molecular Sciences, 2018, 19, 2021.	4.1	108
66	Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core–Shell Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26954-26963.	8.0	52
67	Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools. Nano Convergence, 2018, 5, 11.	12.1	37
68	Bifunctional Au@Bi ₂ Se ₃ Coreâ€"Shell Nanoparticle for Synergetic Therapy by SERSâ€Traceable AntagomiR Delivery and Photothermal Treatment. Small, 2018, 14, e1802934.	10.0	47
69	Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosensors and Bioelectronics, 2017, 94, 485-499.	10.1	50
70	Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosensors and Bioelectronics, 2017, 93, 14-20.	10.1	113
71	Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloids and Surfaces B: Biointerfaces, 2017, 159, 729-736.	5.0	38
72	Electrochemical nucleic acid detection based on parallel structural dsDNA/recombinant azurin hybrid. Biosensors and Bioelectronics, 2017, 98, 292-298.	10.1	25

#	Article	IF	Citations
73	Recombinant azurin-CdSe/ZnS hybrid structures for nanoscale resistive random access memory device. Biosensors and Bioelectronics, 2017, 90, 23-30.	10.1	24
74	Multi-electrochemical signal generation using metalloprotein based on selective surface modification. Biochip Journal, 2017, 11, 322-328.	4.9	3
75	Magnetic Force-Driven Graphene Patterns to Direct Synaptogenesis of Human Neuronal Cells. Materials, 2017, 10, 1151.	2.9	15
76	Electrochemical Detection of Dopamine Using 3D Porous Graphene Oxide/Gold Nanoparticle Composites. Sensors, 2017, 17, 861.	3.8	72
77	Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine. Sensors, 2017, 17, 2771.	3.8	56
78	Microdevice Platform for In Vitro Nervous System and Its Disease Model. Bioengineering, 2017, 4, 77.	3.5	15
79	Azurin/CdSe-ZnS-Based Bio-Nano Hybrid Structure for Nanoscale Resistive Memory Device. Materials, 2017, 10, 803.	2.9	4
80	Electrical Impedance Monitoring of C2C12 Myoblast Differentiation on an Indium Tin Oxide Electrode. Sensors, 2016, 16, 2068.	3.8	13
81	Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application. Sensors, 2016, 16, 660.	3.8	9
82	Nano-Biosensor for Monitoring the Neural Differentiation of Stem Cells. Nanomaterials, 2016, 6, 224.	4.1	18
83	Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 2016, 353, 158-162.	12.6	534
84	Dual-Level Biomemory Device Composed of Cytochrome c/DNA/Myoglobin Heterolayer. Journal of Nanoscience and Nanotechnology, 2016, 16, 8724-8727.	0.9	1
85	General and programmable synthesis of hybrid liposome/metal nanoparticles. Science Advances, 2016, 2, e1601838.	10.3	55
86	Control of electrochemical signals from quantum dots conjugated to organic materials by using DNA structure in an analog logic gate. Bioelectrochemistry, 2016, 111, 1-6.	4.6	8
87	Engineered peptide-based nanobiomaterials for electrochemical cell chip. Nano Convergence, 2016, 3, 17.	12.1	20
88	Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system. Nano Convergence, 2016, 3, 24.	12.1	20
89	Fabrication of fusion protein-based heterolayers composed of redox protein/myoglobin for bioelectronic device. Biochip Journal, 2016, 10, 103-110.	4.9	4
90	Silver nanoflower–reduced graphene oxide composite based micro-disk electrode for insulin detection in serum. Biosensors and Bioelectronics, 2016, 80, 307-314.	10.1	76

#	Article	IF	Citations
91	In situ label-free quantification of human pluripotent stem cells with electrochemical potential. Biomaterials, 2016, 75, 250-259.	11.4	25
92	DNA-Recombinant Azurin Conjugation as a Biomemory Platform with Enhanced Sensitivity. Journal of Nanoscience and Nanotechnology, 2016, 16, 11857-11861.	0.9	2
93	Nanoelectrodes: Large-Scale Nanoelectrode Arrays to Monitor the Dopaminergic Differentiation of Human Neural Stem Cells (Adv. Mater. 41/2015). Advanced Materials, 2015, 27, 6306-6306.	21.0	2
94	Electrochemical Bioelectronic Device Consisting of Metalloprotein for Analog Decision Making. Scientific Reports, 2015, 5, 14501.	3.3	8
95	A Fluorescent Tile DNA Diagnocode System for In Situ Rapid and Selective Diagnosis of Cytosolic RNA Cancer Markers. Scientific Reports, 2015, 5, 18497.	3.3	13
96	A biomemory chip composed of a myoglobin/CNT heterolayer fabricated by the protein-adsorption-precipitation-crosslinking (PAPC) technique. Colloids and Surfaces B: Biointerfaces, 2015, 136, 853-858.	5.0	6
97	Largeâ€Scale Nanoelectrode Arrays to Monitor the Dopaminergic Differentiation of Human Neural Stem Cells. Advanced Materials, 2015, 27, 6356-6362.	21.0	63
98	Graphene-Based Materials for Stem Cell Applications. Materials, 2015, 8, 8674-8690.	2.9	59
99	Monitoring in vitro neural stem cell differentiation based on surface-enhanced Raman spectroscopy using a gold nanostar array. Journal of Materials Chemistry C, 2015, 3, 3848-3859.	5.5	50
100	Development of a HIV-1 Virus Detection System Based on Nanotechnology. Sensors, 2015, 15, 9915-9927.	3.8	22
101	Construction of RNA–Quantum Dot Chimera for Nanoscale Resistive Biomemory Application. ACS Nano, 2015, 9, 6675-6682.	14.6	52
102	Three-dimensional crumpled graphene-based platinum–gold alloy nanoparticle composites as superior electrocatalysts for direct methanol fuel cells. Carbon, 2015, 93, 869-877.	10.3	76
103	Synthesis of 3D Silver-Graphene-Titanium Dioxide Composite via Aerosol Spray Pyrolysis for Sensitive Glucose Biosensor. Aerosol Science and Technology, 2015, 49, 538-546.	3.1	21
104	In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2015, 71, 300-305.	10.1	39
105	Controlling Differentiation of Adipose-Derived Stem Cells Using Combinatorial Graphene Hybrid-Pattern Arrays. ACS Nano, 2015, 9, 3780-3790.	14.6	139
106	Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons's model. Biosensors and Bioelectronics, 2015, 67, 739-746.	10.1	72
107	Fabrication of new single cell chip to monitor intracellular and extracellular redox state based on spectroelectrochemical method. Biomaterials, 2015, 40, 80-87.	11.4	33
108	3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites. Biosensors and Bioelectronics, 2015, 63, 546-551.	10.1	165

#	Article	IF	Citations
109	Development of a Microbe-Zeolite Carrier for the Effective Elimination of Heavy Metals from Seawater. Journal of Microbiology and Biotechnology, 2015, 25, 1542-1546.	2.1	89
110	Aerosol Processing of Graphene and Its Application to Oil Absorbent and Glucose Biosensor. KONA Powder and Particle Journal, 2014, 31, 111-125.	1.7	11
111	In-situ detection of neurotransmitter release from PC12 cells using Surface Enhanced Raman Spectroscopy. Biotechnology and Bioprocess Engineering, 2014, 19, 1069-1076.	2.6	16
112	Protein Based Electrochemical Biosensors for H ₂ O ₂ Detection Towards Clinical Diagnostics. Electroanalysis, 2014, 26, 1259-1276.	2.9	36
113	Bioprocessing Device Composed of Protein/DNA/Inorganic Material Hybrid. Advanced Functional Materials, 2014, 24, 1781-1789.	14.9	20
114	A fluorescence color-encoded lipid-supported polymeric particle. Colloids and Surfaces B: Biointerfaces, 2014, 122, 840-845.	5.0	1
115	Predictive evaluation for the preparation of a synthetic Y-shaped DNA nanostructure. Biotechnology and Bioprocess Engineering, 2014, 19, 262-268.	2.6	1
116	Fusion protein-based biofilm fabrication composed of recombinant azurin–myoglobin for dual-level biomemory application. Applied Surface Science, 2014, 320, 448-454.	6.1	4
117	Fusion protein bilayer fabrication composed of recombinant azurin/cytochrome P450 by the sortase-mediated ligation method. Colloids and Surfaces B: Biointerfaces, 2014, 120, 215-221.	5.0	3
118	Nanoscale biomemory composed of recombinant azurin on a nanogap electrode. Nanotechnology, 2013, 24, 365301.	2.6	8
119	One-Step Synthesis of Pt-Nanoparticles-Laden Graphene Crumples by Aerosol Spray Pyrolysis and Evaluation of Their Electrocatalytic Activity. Aerosol Science and Technology, 2013, 47, 93-98.	3.1	48
120	Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment. International Journal of Stem Cells, 2013, 6, 75-86.	1.8	2
121	Current perspectives of biodegradable drug-eluting stents for improved safety. Biotechnology and Bioprocess Engineering, 2012, 17, 912-924.	2.6	7
122	Detection of $\langle 1 \rangle \hat{l}^2 \langle 1 \rangle$ -Amyloid (1-42) on Protein Array Based on Electrical Detection Technique Using Scanning Tunneling Microscopy. Journal of Nanoscience and Nanotechnology, 2011, 11, 4200-4204.	0.9	4
123	Signal Enhancement of Electrochemical Biomemory Device Composed of Recombinant Azurin/Gold Nanoparticle. Electroanalysis, 2011, 23, 2023-2029.	2.9	16
124	NANOSCALE BIOELECTRONIC DEVICE CONSISTING OF BIOMOLECULES. , 2010, , 347-374.		0
125	Electrochemical biomemory device consisting of recombinant protein molecules. Biotechnology and Bioprocess Engineering, 2010, 15, 30-39.	2.6	10
126	Electrical detection-based analytic biodevice technology. Biochip Journal, 2010, 4, 1-8.	4.9	19

#	Article	IF	Citations
127	Multilevel Biomemory Device Consisting of Recombinant Azurin/Cytochrome c. Advanced Materials, 2010, 22, 510-514.	21.0	105
128	Electrochemical Detection of Bisphenol A – Induced Neuronal Toxicity Using RGD Peptide Modified ITO Electrode Cell Chip. Molecular Crystals and Liquid Crystals, 2010, 519, 36-42.	0.9	9
129	Fabrication of Biomemory Device Composed of Myoglobin on DTSSP Layer. Molecular Crystals and Liquid Crystals, 2010, 519, 19-26.	0.9	6
130	Biomemory device composed of recombinant azurin. , 2010, , .		0
131	Polyaniline based catalase biosensor for the detection of hydrogen peroxide and azide. Biotechnology and Bioprocess Engineering, 2009, 14, 443-449.	2.6	26
132	Fabrication of functional biomolecular layer using recombinant technique for the bioelectronic device. Korean Journal of Chemical Engineering, 2008, 25, 1115-1119.	2.7	5
133	The fabrication of functional biosurface composed of iron storage protein, ferritin. Ultramicroscopy, 2008, 108, 1356-1359.	1.9	13
134	The development of protein chip using protein G for the simultaneous detection of various pathogens. Ultramicroscopy, 2008, 108, 1396-1400.	1.9	7
135	Self-Assembled Monolayer of DTSSP Modified Azurin for Biomolecular Electronic Device. Molecular Crystals and Liquid Crystals, 2008, 492, 1/[365]-10/[374].	0.9	1
136	Fabrication of Mouse Embryonic Stem Cell Chip Using Self-Assembled Layer of Cysteine-Modified RGD Oligopeptide. Molecular Crystals and Liquid Crystals, 2008, 492, 184/[548]-191/[555].	0.9	6
137	Ultrasensitive immunoassay for prostate specific antigen using scanning tunneling microscopy-based electrical detection. Applied Physics Letters, 2008, 93, .	3.3	13
138	Molecular Scale Photodiode Composed of Recombinant Ferredoxin/Chlorophyll a Heterostructure. Journal of Nanoscience and Nanotechnology, 2008, 8, 4527-4532.	0.9	0
139	Nanoscale Fabrication ofP. aeruginosa Azurinon Self-Assembled Monolayer. Molecular Crystals and Liquid Crystals, 2007, 463, 281/[563]-289/[571].	0.9	3
140	Antibody Immobilization for Immunosensor on ProteinA Fabricated by Electrostatic Interaction of Synthetic Peptide. Molecular Crystals and Liquid Crystals, 2007, 463, 245/[527]-254/[536].	0.9	1
141	Polyelectrolyte multilayer microcapsules: Self-assembly and toward biomedical applications. Biotechnology and Bioprocess Engineering, 2007, 12, 323-332.	2.6	52
142	Nanotechnology in biodevices. Journal of Microbiology and Biotechnology, 2007, 17, 5-14.	2.1	51
143	The Fabrication of Molecular Memory Device Composed of Iron Storage Protein, Ferritin. , 2006, , .		0
144	Application of complement 1q for the site-selective recognition of immune complex in protein chip. Biosensors and Bioelectronics, 2006, 22, 764-767.	10.1	12

#	Article	IF	Citations
145	Application of computational fluid dynamics analysis for improving performance of commercial scale selective catalytic reduction. Korean Journal of Chemical Engineering, 2006, 23, 43-56.	2.7	10
146	Rectified photocurrent of biophodiode composed of cytochrome c/chlorophyll a hetero-structure. , 2006, , .		0
147	Bio electroluminescent device composed of cytochrome c/chlorophyll a hetero-structure. , 2006, , .		1
148	The Methodology to Improve the Performance of a Selective Catalytic Reduction System Installed in HRSG Using Computational Fluid Dynamics Analysis. Environmental Engineering Science, 2006, 23, 863-873.	1.6	3
149	Biomolecular photonic device consisting of Chl a/Chl b/phycoerythrin/phycocyanin hetero structure. Journal of Nanoscience and Nanotechnology, 2006, 6, 3526-31.	0.9	О
150	Fabrication of DNA–protein conjugate layer on gold-substrate and its application to immunosensor. Colloids and Surfaces B: Biointerfaces, 2005, 40, 173-177.	5.0	22
151	Cell immobilization using self-assembled synthetic oligopeptide and its application to biological toxicity detection using surface plasmon resonanceâ [†] t. Biosensors and Bioelectronics, 2005, 20, 2300-2305.	10.1	76
152	Nanoscale fabrication of biomolecular layer and its application to biodevices. Biotechnology and Bioprocess Engineering, 2004, 9, 76-85.	2.6	49
153	Fabrication of protein a-viologen hetero Langmuir-Blodgett film for fluorescence immunoassay. Biotechnology and Bioprocess Engineering, 2004, 9, 241-244.	2.6	6
154	Transient photocurrent characteristics of chlorophyll a langmuir-blodgett film. Molecular Crystals and Liquid Crystals, 2004, 425, 257-264.	0.9	2
155	Nano-scale probe fabrication using self-assembly technique and application to detection of Escherichia coli O 157â^¶H7. Biotechnology and Bioprocess Engineering, 2003, 8, 227-232.	2.6	38
156	Surface Modification of a Self-Assembled Ferredoxin Monolayer on a Gold Substrate by CHAPS. Langmuir, 2003, 19, 8744-8748.	3.5	8
157	"OR―LOGIC FUNCTION OF MOLECULAR PHOTODIODE CONSISTING OF GFP/VIOLOGEN/CYTOCHROME <i>C</i> HETERO-FILM. Molecular Crystals and Liquid Crystals, 2003, 407, 89-96.	0.9	7
158	Fractal-Time Response Function of GFP/Viologen/TCNQ Structured Molecular Photodiode. Molecular Crystals and Liquid Crystals, 2002, 377, 245-248.	0.9	0
159	"AND" Logic Function of Molecular Photodiode Consisting of GFP/TCNQ Hetero-Film. Molecular Crystals and Liquid Crystals, 2002, 377, 249-252.	0.9	6
160	3D Neural Network Composed of Neurospheroid and Bionanohybrid on Microelectrode Array to Realize the Spatial Input Signal Recognition in Neurospheroid. Small Methods, 0, , 2200127.	8.6	2