Vladimir V Chakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2365432/publications.pdf

Version: 2024-02-01

2258059 1872680 14 35 3 6 citations g-index h-index papers 14 14 14 23 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Renewable vegetable raw materials as a base for preparing versatile functional nanocomposites. Russian Journal of Applied Chemistry, 2011, 84, 1611-1615.	0.5	10
2	Promising nanocomposite materials based on renewable plant resources. Metallurgist, 2013, 56, 679-683.	0.6	7
3	Organic matter of the liquid phase of peat and its hydrolyzates from the deposits of the Middle Amur basin. Russian Journal of Pacific Geology, 2008, 2, 553-556.	0.7	3
4	Promising carbon modifications for the mechanochemical synthesis of titanium carbide. Doklady Chemistry, 2012, 445, 152-154.	0.9	3
5	Formation of multiwalled nanotubes through mechanical activation of amorphous carbon. Doklady Physical Chemistry, 2012, 447, 213-215.	0.9	3
6	Bioaerosols as Evidence of Atmospheric Circulation Anomalies over the Okhotsk Sea and Shantar Islands in the Late Glacial–Holocene. Climate, 2022, 10, 24.	2.8	3
7	Technique for production of oil sorbents from renewable plant raw materials: Waste from cereal plants and sphagnum moss species. Russian Journal of Applied Chemistry, 2012, 85, 98-101.	0.5	2
8	Mechanochemical processes accompanying metal grinding in the presence of a high-molecular-weight compound. Doklady Physical Chemistry, 2012, 445, 138-140.	0.9	1
9	Kinetics of formation of multiwall nanotubes from moss. Solid Fuel Chemistry, 2013, 47, 237-242.	0.7	1
10	Prospects for sphagnum peat as a source of fullerenes. Coke and Chemistry, 2013, 56, 299-301.	0.4	1
11	Topology, Vegetation and Stratigraphy of Far Eastern Aapa Mires (Khabarovsk Region, Russia). Land, 2022, 11, 96.	2.9	1
12	Investigation of the sorption activity of multilayer carbon nanotubes and amorphous carbon formed from regenerative vegetable raw materials. Journal of Engineering Physics and Thermophysics, 2013, 86, 1035-1040.	0.6	0
13	Nanocomposites based on vegetable and mineral raw materials. Inorganic Materials, 2013, 49, 740-744.	0.8	O
14	Vascular Plants Flora of Mire Ecosystem of the Bolshoy Shantar Island (the Far East of Russia). Plants, 2022, 11, 723.	3.5	0