Gitta Lasslop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2365304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Global Change Biology, 2022, 28, 307-322.	4.2	33
2	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60, .	9.0	182
3	Reduced global fire activity due to human demography slows global warming by enhanced land carbon uptake. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2101186119.	3.3	12
4	Linking Vegetation-Climate-Fire Relationships in Sub-Saharan Africa to Key Ecological Processes in Two Dynamic Global Vegetation Models. Frontiers in Environmental Science, 2020, 8, .	1.5	6
5	Editorial: Climate, Land Use, and Fire: Can Models Inform Management?. Frontiers in Earth Science, 2020, 8, .	0.8	1
6	Global ecosystems and fire: Multiâ€model assessment of fireâ€induced treeâ€cover and carbon storage reduction. Global Change Biology, 2020, 26, 5027-5041.	4.2	55
7	Vegetation biomass change in China in the 20th century: an assessment based on a combination of multi-model simulations and field observations. Environmental Research Letters, 2020, 15, 094026.	2.2	6
8	Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development, 2020, 13, 3299-3318.	1.3	63
9	Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics, 2019, 19, 12545-12567.	1.9	64
10	Recent global and regional trends in burned area and their compensating environmental controls. Environmental Research Communications, 2019, 1, 051005.	0.9	55
11	Developments in the MPIâ€M Earth System Model version 1.2 (MPIâ€ESM1.2) and Its Response to Increasing CO ₂ . Journal of Advances in Modeling Earth Systems, 2019, 11, 998-1038.	1.3	582
12	Influence of Fire on the Carbon Cycle and Climate. Current Climate Change Reports, 2019, 5, 112-123.	2.8	81
13	Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 2019, 16, 57-76.	1.3	85
14	Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences, 2019, 16, 3883-3910.	1.3	32
15	Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 168-177.	1.3	6
16	Tropical climate–vegetation–fire relationships: multivariate evaluation of the land surface model JSBACH. Biogeosciences, 2018, 15, 5969-5989.	1.3	10
17	Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Global and Planetary Change, 2017, 150, 58-69.	1.6	49
18	Rare, Intense, Big fires dominate the global tropics under drier conditions. Scientific Reports, 2017, 7, 14374.	1.6	30

GITTA LASSLOP

#	Article	IF	CITATIONS
19	A human-driven decline in global burned area. Science, 2017, 356, 1356-1362.	6.0	694
20	Human impact on wildfires varies between regions and with vegetation productivity. Environmental Research Letters, 2017, 12, 115011.	2.2	34
21	Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geoscientific Model Development, 2017, 10, 3329-3357.	1.3	322
22	The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geoscientific Model Development, 2017, 10, 1175-1197.	1.3	159
23	A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geoscientific Model Development, 2017, 10, 4443-4476.	1.3	51
24	The status and challenge of global fire modelling. Biogeosciences, 2016, 13, 3359-3375.	1.3	274
25	Multiple stable states of tree cover in a global land surface model due to a fireâ€vegetation feedback. Geophysical Research Letters, 2016, 43, 6324-6331.	1.5	54
26	Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090–2099. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3195-3223.	1.2	37
27	Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1941-1957.	1.3	65
28	Anthropogenic effects on global mean fire size. International Journal of Wildland Fire, 2015, 24, 589.	1.0	54
29	Impact of fuel variability on wildfire emission estimates. Atmospheric Environment, 2015, 121, 93-102.	1.9	11
30	Influence of wind speed on the global variability of burned fraction: a global fire model's perspective. International Journal of Wildland Fire, 2015, 24, 989.	1.0	19
31	SPITFIRE within the MPI <scp>E</scp> arth system model: <scp>M</scp> odel development and evaluation. Journal of Advances in Modeling Earth Systems, 2014, 6, 740-755.	1.3	100
32	Random errors in carbon and water vapor fluxes assessed with Gaussian Processes. Agricultural and Forest Meteorology, 2013, 178-179, 161-172.	1.9	18
33	Uncertainty Quantification. , 2012, , 173-209.		69
34	Partitioning of Net Fluxes. , 2012, , 263-289.		33
35	Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4. Journal of Geophysical Research, 2012, 117, .	3.3	169
36	Correction to "Global patterns of landâ€atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations― Journal of Geophysical Research, 2012, 117, .	3.3	5

GITTA LASSLOP

#	Article	IF	CITATIONS
37	Effects of climate variability and functional changes on the interannual variation of the carbon balance in a temperate deciduous forest. Biogeosciences, 2012, 9, 13-28.	1.3	48
38	Corrigendum to "Effects of climate variability and functional changes on the interannual variation of the carbon balance in a temperate deciduous forest" published in Biogeosciences, 9, 13–28, 2012. Biogeosciences, 2012, 9, 715-715.	1.3	1
39	On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning. Biogeosciences, 2012, 9, 5243-5259.	1.3	45
40	Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 2011, 116, .	3.3	933
41	Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Global Change Biology, 2011, 17, 390-409.	4.2	128
42	Response to Comment on "Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level― Science, 2011, 331, 1265-1265.	6.0	9
43	Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology, 2010, 16, 187-208.	4.2	752
44	Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level. Science, 2010, 329, 838-840.	6.0	446
45	Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 2010, 329, 834-838.	6.0	2,056
46	Treatment and assessment of the CO2-exchange at a complex forest site in Thuringia, Germany. Agricultural and Forest Meteorology, 2010, 150, 684-691.	1.9	46
47	Comment on Vickers et al.: Self-correlation between assimilation and respiration resulting from flux partitioning of eddy-covariance CO2 fluxes. Agricultural and Forest Meteorology, 2010, 150, 312-314.	1.9	28
48	Influences of observation errors in eddy flux data on inverse model parameter estimation. Biogeosciences, 2008, 5, 1311-1324.	1.3	112