David Fenyo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/23652/publications.pdf

Version: 2024-02-01

187 papers 18,134 citations

59 h-index 123 g-index

227 all docs

227
docs citations

times ranked

227

24830 citing authors

#	Article	IF	CITATIONS
1	Deep Learning and Pathomics Analyses Reveal Cell Nuclei as Important Features for Mutation Prediction of BRAF-Mutated Melanomas. Journal of Investigative Dermatology, 2022, 142, 1650-1658.e6.	0.3	22
2	Deep Learning and Its Applications in Computational Pathology. BioMedInformatics, 2022, 2, 159-168.	1.0	7
3	Predicting and Visualizing STK11 Mutation in Lung Adenocarcinoma Histopathology Slides Using Deep Learning. BioMedInformatics, 2022, 2, 101-105.	1.0	3
4	LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	36
5	USP1-trapping lesions as a source of DNA replication stress and genomic instability. Nature Communications, 2022, 13, 1740.	5.8	15
6	Prediction of Maternal Hemorrhage Using Machine Learning: Retrospective Cohort Study. Journal of Medical Internet Research, 2022, 24, e34108.	2.1	3
7	When blockchain meets artificial intelligence: An application to cancer histopathology. Cell Reports Medicine, 2022, 3, 100666.	3.3	O
8	Dissecting the Structural Dynamics of the Nuclear Pore Complex. Molecular Cell, 2021, 81, 153-165.e7.	4.5	31
9	Structural and Functional Characterization of a Na _v 1.5-Mitochondrial Couplon. Circulation Research, 2021, 128, 419-432.	2.0	15
10	Monitoring genome-wide replication fork directionality by Okazaki fragment sequencing in mammalian cells. Nature Protocols, 2021, 16, 1193-1218.	5. 5	5
11	RIP-seq reveals LINE-1 ORF1p association with p-body enriched mRNAs. Mobile DNA, 2021, 12, 5.	1.3	20
12	Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell, 2021, 39, 361-379.e16.	7.7	189
13	Discovery of Protein Modifications Using Differential Tandem Mass Spectrometry Proteomics. Journal of Proteome Research, 2021, 20, 1835-1848.	1.8	13
14	Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell, 2021, 39, 509-528.e20.	7.7	327
15	CRL4AMBRA1 is a master regulator of D-type cyclins. Nature, 2021, 592, 789-793.	13.7	78
16	Spatially interacting phosphorylation sites and mutations in cancer. Nature Communications, 2021, 12, 2313.	5.8	12
17	Diversity of Functionally Distinct Clonal Sets of Human Conventional Memory B Cells That Bind Staphylococcal Protein A. Frontiers in Immunology, 2021, 12, 662782.	2.2	6
18	A predictive model for vertebrate bone identification from collagen using proteomic mass spectrometry. Scientific Reports, 2021, 11, 10900.	1.6	4

#	Article	IF	CITATIONS
19	Adenosine A2A receptor null chondrocyte transcriptome resembles that of human osteoarthritic chondrocytes. Purinergic Signalling, 2021, 17, 439-448.	1.1	3
20	BlackSheep: A Bioconductor and Bioconda Package for Differential Extreme Value Analysis. Journal of Proteome Research, 2021, 20, 3767-3773.	1.8	6
21	The human melanoma proteome atlas—Defining the molecular pathology. Clinical and Translational Medicine, 2021, 11, e473.	1.7	14
22	The Human Melanoma Proteome Atlasâ€"Complementing the melanoma transcriptome. Clinical and Translational Medicine, 2021, 11, e451.	1.7	20
23	Predictive Modeling of Morbidity and Mortality in Patients Hospitalized With COVID-19 and its Clinical Implications: Algorithm Development and Interpretation. Journal of Medical Internet Research, 2021, 23, e29514.	2.1	14
24	A proteogenomic portrait of lung squamous cell carcinoma. Cell, 2021, 184, 4348-4371.e40.	13.5	170
25	The role of retrotransposable elements in ageing and age-associated diseases. Nature, 2021, 596, 43-53.	13.7	156
26	Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell, 2021, 184, 5031-5052.e26.	13.5	236
27	Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Reports Medicine, 2021, 2, 100400.	3.3	50
28	511â€Disease flares in lupus are concordant with ⟨i⟩Ruminococcus Blautia Gnavus⟨/i⟩ blooms arising within unstable gut microbiota communities., 2021,,.		0
29	Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. ELife, 2021, 10, .	2.8	36
30	L1EM: a tool for accurate locus specific LINE-1 RNA quantification. Bioinformatics, 2020, 36, 1167-1173.	1.8	31
31	LINE-1 ORF2p expression is nearly imperceptible in human cancers. Mobile DNA, 2020, 11, 1.	1.3	51
32	SINGLE CELL TIPSEQ, A NEW METHOD TO MAP LINE-1 INSERTIONS, PROVIDES INFORMATION ABOUT SUB CHROMOSOMAL GENETIC VARIATION IN HUMAN EMBRYOS. Fertility and Sterility, 2020, 114, e524.	0.5	0
33	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell, 2020, 183, 1436-1456.e31.	13.5	273
34	Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell, 2020, 183, 1962-1985.e31.	13.5	177
35	Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis. Scientific Reports, 2020, 10, 13477.	1.6	18
36	Community Assessment of the Predictability of Cancer Protein and Phosphoprotein Levels from Genomics and Transcriptomics. Cell Systems, 2020, 11, 186-195.e9.	2.9	19

#	Article	IF	CITATIONS
37	Affinity proteomic dissection of the human nuclear cap-binding complex interactome. Nucleic Acids Research, 2020, 48, 10456-10469.	6.5	18
38	Distinct Features of Human Myeloid Cell Cytokine Response Profiles Identify Neutrophil Activation by Cytokines as a Prognostic Feature during Tuberculosis and Cancer. Journal of Immunology, 2020, 204, 3389-3399.	0.4	4
39	Clinical decision support tool and rapid point-of-care platform for determining disease severity in patients with COVID-19. Lab on A Chip, 2020, 20, 2075-2085.	3.1	82
40	Human transposon insertion profiling by sequencing (TIPseq) to map LINE-1 insertions in single cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190335.	1.8	6
41	Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell, 2020, 182, 200-225.e35.	13.5	410
42	Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nature Structural and Molecular Biology, 2020, 27, 168-178.	3.6	74
43	BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nature Structural and Molecular Biology, 2020, 27, 179-191.	3.6	60
44	Proteogenomic Characterization of Endometrial Carcinoma. Cell, 2020, 180, 729-748.e26.	13.5	296
45	TranspoScope: interactive visualization of retrotransposon insertions. Bioinformatics, 2020, 36, 3877-3878.	1.8	0
46	Phylogenetic debugging of a complete human biosynthetic pathway transplanted into yeast. Nucleic Acids Research, 2020, 48, 486-499.	6.5	11
47	Abstract 6580: Proteogenomic characterization of endometrial carcinoma. Cancer Research, 2020, 80, 6580-6580.	0.4	7
48	Managing COVID-19 With a Clinical Decision Support Tool in a Community Health Network: Algorithm Development and Validation. Journal of Medical Internet Research, 2020, 22, e22033.	2.1	33
49	Integration and Analysis of CPTAC Proteomics Data in the Context of Cancer Genomics in the cBioPortal. Molecular and Cellular Proteomics, 2019, 18, 1893-1898.	2.5	106
50	Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell, 2019, 179, 964-983.e31.	13.5	430
51	Regulated Phosphosignaling Associated with Breast Cancer Subtypes and Druggability*. Molecular and Cellular Proteomics, 2019, 18, 1630-1650.	2.5	14
52	Extracting Pathway-level Signatures from Proteogenomic Data in Breast Cancer Using Independent Component Analysis. Molecular and Cellular Proteomics, 2019, 18, S169-S182.	2.5	15
53	Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell, 2019, 177, 1035-1049.e19.	13.5	498
54	Transposon insertion profiling by sequencing (TIPseq) for mapping LINE-1 insertions in the human genome. Mobile DNA, 2019, 10, 8.	1.3	22

#	Article	IF	Citations
55	Comprehensive Scanning Mutagenesis of Human Retrotransposon LINE-1 Identifies Motifs Essential for Function. Genetics, 2019, 213, 1401-1414.	1.2	22
56	Informatics Approaches to Forensic Body Fluid Identification by Proteomic Mass Spectrometry. ACS Symposium Series, 2019, , 81-90.	0.5	1
57	The Hidden Story of Heterogeneous B-raf V600E Mutation Quantitative Protein Expression in Metastatic Melanoma—Association with Clinical Outcome and Tumor Phenotypes. Cancers, 2019, 11, 1981.	1.7	16
58	Transcription shapes DNA replication initiation and termination in human cells. Nature Structural and Molecular Biology, 2019, 26, 67-77.	3.6	118
59	Quantitative Mass Spectrometry to Interrogate Proteomic Heterogeneity in Metastatic Lung Adenocarcinoma and Validate a Novel Somatic Mutation CDK12-G879V. Molecular and Cellular Proteomics, 2019, 18, 622-641.	2.5	15
60	Mass Spectrometry–Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Research, 2018, 78, 2732-2746.	0.4	52
61	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Reports, 2018, 23, 270-281.e3.	2.9	177
62	Large Scale Identification of Variant Proteins in Glioma Stem Cells. ACS Chemical Neuroscience, 2018, 9, 73-79.	1.7	12
63	Human Memory B Cells Targeting <i> Staphylococcus aureus </i> Exotoxins Are Prevalent with Skin and Soft Tissue Infection. MBio, 2018, 9, .	1.8	27
64	A toolbox of immunoprecipitation-grade monoclonal antibodies to human transcription factors. Nature Methods, 2018, 15, 330-338.	9.0	58
65	Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nature Communications, 2018, 9, 5022.	5.8	109
66	Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nature Communications, 2018, 9, 3882.	5.8	46
67	Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine, 2018, 24, 1559-1567.	15.2	1,768
68	Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5526-E5535.	3.3	77
69	Dissection of affinity captured LINE-1 macromolecular complexes. ELife, 2018, 7, .	2.8	63
70	LINE-1 protein localization and functional dynamics during the cell cycle. ELife, 2018, 7, .	2.8	99
71	UXT is required for spermatogenesis in mice. PLoS ONE, 2018, 13, e0195747.	1.1	5
72	The proBAM and proBed standard formats: enabling a seamless integration of genomics and proteomics data. Genome Biology, 2018, 19, 12.	3.8	21

#	Article	IF	CITATIONS
73	Abstract 5309: Determining EGFR and STK11 mutational status in lung adenocarcinoma histopathology images using deep learning. , 2018, , .		2
74	The ULK1-FBXW5-SEC23B nexus controls autophagy. ELife, 2018, 7, .	2.8	63
75	Proteogenomics from a bioinformatics angle: A growing field. Mass Spectrometry Reviews, 2017, 36, 584-599.	2.8	65
76	Human transposon insertion profiling: Analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E733-E740.	3.3	86
77	Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science, 2017, 355, .	6.0	184
78	Low escape-rate genome safeguards with minimal molecular perturbation of <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1470-E1479.	3.3	26
79	Methods, Tools and Current Perspectives in Proteogenomics. Molecular and Cellular Proteomics, 2017, 16, 959-981.	2.5	130
80	GenomeVIP: a cloud platform for genomic variant discovery and interpretation. Genome Research, 2017, 27, 1450-1459.	2.4	15
81	A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. Cancer Cell, 2017, 31, 804-819.e7.	7.7	233
82	Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nature Communications, 2017, 8, 14864.	5.8	112
83	Adaptive Multiview Nonnegative Matrix Factorization Algorithm for Integration of Multimodal Biomedical Data. Cancer Informatics, 2017, 16, 117693511772572.	0.9	6
84	Breast tumors educate the proteome of stromal tissue in an individualized but coordinated manner. Science Signaling, 2017, 10, .	1.6	25
85	A Method for Quantifying Molecular Interactions Using Stochastic Modelling and Super-Resolution Microscopy. Scientific Reports, 2017, 7, 14882.	1.6	28
86	Endothelium-Independent Primitive Myxoid Vascularization Creates Invertebrate-Like Channels to Maintain Blood Supply in Optic Gliomas. American Journal of Pathology, 2017, 187, 1867-1878.	1.9	4
87	[O1–14–04]: RAGE AND DIAPHâ€1 REGULATE CRITICAL PHENOTYPES OF MICROGLIA IN HEALTHY AGING ANI ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P229.	D _{0.4}	0
88	Single Molecule Localization Microscopy of DNA Damage Response Pathways in Cancer Microscopy and Microanalysis, 2016, 22, 1016-1017.	0.2	4
89	Somatic retrotransposition is infrequent in glioblastomas. Mobile DNA, 2016, 7, 22.	1.3	17
90	Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 2016, 534, 55-62.	13.7	1,384

#	Article	IF	Citations
91	Next Generation Sequencing Data and Proteogenomics. Advances in Experimental Medicine and Biology, 2016, 926, 11-19.	0.8	6
92	OpenSlice: Quantitative data sharing from HyperPeaks to global ion chromatograms (GICs). Proteomics, 2016, 16, 2495-2501.	1.3	1
93	Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nature Communications, 2016, 7, 10342.	5.8	76
94	Cyclin F-Mediated Degradation of SLBP Limits H2A.X Accumulation and Apoptosis upon Genotoxic Stress in G2. Molecular Cell, 2016, 64, 507-519.	4.5	64
95	HIV–host interactome revealed directly from infected cells. Nature Microbiology, 2016, 1, 16068.	5.9	49
96	Fluorescence ImmunoPrecipitation (FLIP): a Novel Assay for High-Throughput IP. Biological Procedures Online, 2016, 18, 16.	1.4	6
97	Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell, 2016, 166, 755-765.	13.5	804
98	Optimizing selection of large animals for antibody production by screening immune response to standard vaccines. Journal of Immunological Methods, 2016, 430, 56-60.	0.6	17
99	Selenocysteine: Wherefore Art Thou?. Journal of Proteome Research, 2016, 15, 677-678.	1.8	4
100	An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer. Molecular and Cellular Proteomics, 2016, 15, 1060-1071.	2.5	104
101	PGx: Putting Peptides to BED. Journal of Proteome Research, 2016, 15, 795-799.	1.8	20
102	g2pDB: A Database Mapping Protein Post-Translational Modifications to Genomic Coordinates. Journal of Proteome Research, 2016, 15, 983-990.	1.8	5
103	Separable roles for <i>Mycobacterium tuberculosis</i> ESX-3 effectors in iron acquisition and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E348-57.	3.3	166
104	Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts. Molecular and Cellular Proteomics, 2016, 15, 45-56.	2.5	68
105	Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays. Methods in Molecular Biology, 2016, 1410, 223-236.	0.4	33
106	A Complex Systems Approach to Causal Discovery in Psychiatry. PLoS ONE, 2016, 11, e0151174.	1.1	29
107	Breast Cancer Prognostics Using Multi-Omics Data. AMIA Summits on Translational Science Proceedings, 2016, 2016, 52-9.	0.4	6
108	A First Step towards a Clinical Decision Support System for Post-traumatic Stress Disorders. AMIA Annual Symposium proceedings, 2016, 2016, 837-843.	0.2	3

#	Article	IF	CITATIONS
109	The GPMDB REST interface. Bioinformatics, 2015, 31, 2056-2058.	1.8	25
110	Rapid, optimized interactomic screening. Nature Methods, 2015, 12, 553-560.	9.0	68
111	Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2575-84.	3.3	142
112	Use of ENCODE Resources to Characterize Novel Proteoforms and Missing Proteins in the Human Proteome. Journal of Proteome Research, 2015, 14, 603-608.	1.8	17
113	Abstract SY44-02: Proteogenomic and phosphoproteomic analysis of breast cancer., 2015,,.		0
114	CPTAC Assay Portal: a repository of targeted proteomic assays. Nature Methods, 2014, 11, 703-704.	9.0	150
115	Pathway analysis and transcriptomics improve protein identification by shotgun proteomics from samples comprising small number of cells - a benchmarking study. BMC Genomics, 2014, 15, S1.	1.2	22
116	A robust pipeline for rapid production of versatile nanobody repertoires. Nature Methods, 2014, 11, 1253-1260.	9.0	391
117	Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovascular Research, 2014, 104, 371-381.	1.8	110
118	Integrated Chromosome 19 Transcriptomic and Proteomic Data Sets Derived from Glioma Cancer Stem-Cell Lines. Journal of Proteome Research, 2014, 13, 191-199.	1.8	27
119	Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels. Molecular and Cellular Proteomics, 2014, 13, 1690-1704.	2.5	323
120	Developments in biobanking workflow standardization providing sample integrity and stability. Journal of Proteomics, 2013, 95, 38-45.	1.2	56
121	A Chromosome-centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17. Journal of Proteome Research, 2013, 12, 45-57.	1.8	35
122	Chromosome 19 Annotations with Disease Speciation: A First Report from the Global Research Consortium. Journal of Proteome Research, 2013, 12, 135-150.	1.8	16
123	Atypical and classical memory B cells produce <i>Plasmodium falciparum</i> neutralizing antibodies. Journal of Experimental Medicine, 2013, 210, 389-399.	4.2	200
124	Comparative proteomic analysis of the <scp>ATP</scp> â€sensitive <scp>K</scp> ⁺ channel complex in different tissue types. Proteomics, 2013, 13, 368-378.	1.3	16
125	Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. Cardiovascular Research, 2013, 100, 231-240.	1.8	67
126	Strategy for Identifying Dendritic Cell-Processed CD4+ T Cell Epitopes from the HIV Gag p24 Protein. PLoS ONE, 2012, 7, e41897.	1.1	7

#	Article	IF	Citations
127	Highâ€Throughput, Singleâ€Step Purification of Affinityâ€Tagged Protein Complexes. FASEB Journal, 2012, 26,	0.2	0
128	Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding. Science, 2011, 333, 1633-1637.	6.0	1,046
129	High-capacity ion trap coupled to a time-of-flight mass spectrometer for comprehensive linked scans with no scanning losses. International Journal of Mass Spectrometry, 2011, 301, 211-219.	0.7	5
130	Modeling Mass Spectrometry-Based Protein Analysis. Methods in Molecular Biology, 2011, 694, 109-117.	0.4	2
131	The Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative. Preparation and characterisation of the carbonateâ€washed membrane standard. Proteomics, 2010, 10, 4142-4148.	1.3	26
132	Interlaboratory Study Characterizing a Yeast Performance Standard for Benchmarking LC-MS Platform Performance. Molecular and Cellular Proteomics, 2010, 9, 242-254.	2.5	148
133	GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Molecular Systems Biology, 2010, 6, 353.	3.2	116
134	Protein Quantitation Using Mass Spectrometry. Methods in Molecular Biology, 2010, 673, 211-222.	0.4	59
135	Mass Spectrometric Protein Identification Using the Global Proteome Machine. Methods in Molecular Biology, 2010, 673, 189-202.	0.4	50
136	Modeling Experimental Design for Proteomics. Methods in Molecular Biology, 2010, 673, 223-230.	0.4	6
137	Four histone variants mark the boundaries of polycistronic transcription units in <i>Trypanosoma brucei</i> . Genes and Development, 2009, 23, 1063-1076.	2.7	312
138	Rapid sensitive analysis of cysteine rich peptide venom components. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6910-6915.	3.3	103
139	Evaluation of the Variation in Sample Preparation for Comparative Proteomics Using Stable Isotope Labeling by Amino Acids in Cell Culture. Journal of Proteome Research, 2009, 8, 1285-1292.	1.8	50
140	Informatics development: Challenges and solutions for MALDI mass spectrometry. Mass Spectrometry Reviews, 2008, 27, 1-19.	2.8	16
141	Blue Native PAGE and Mass Spectrometry Analysis of Ephrin Stimulation-Dependent Protein-Protein Interactions in NG108-EphB2 Cells. NATO Science for Peace and Security Series A: Chemistry and Biology, 2008, , 3-22.	0.5	23
142	Rapid Isolation and Identification of Bacteriophage T4-Encoded Modifications of <i>Escherichia coli</i> RNA Polymerase: A Generic Method to Study Bacteriophage/Host Interactions. Journal of Proteome Research, 2008, 7, 1244-1250.	1.8	14
143	Screening for EphB Signaling Effectors Using SILAC with a Linear Ion Trap-Orbitrap Mass Spectrometer. Journal of Proteome Research, 2008, 7, 4715-4726.	1.8	26
144	Validation of Endogenous Peptide Identifications Using a Database of Tandem Mass Spectra. Journal of Proteome Research, 2008, 7, 3049-3053.	1.8	28

#	Article	IF	Citations
145	Efficient Identification of Phosphorylation by Mass Spectrometric Phosphopeptide Fingerprinting. Analytical Chemistry, 2008, 80, 2419-2425.	3.2	15
146	Use of DNA Ladders for Reproducible Protein Fractionation by Sodium Dodecyl Sulfateâ^Polyacrylamide Gel Electrophoresis (SDSâ^PAGE) for Quantitative Proteomics. Journal of Proteome Research, 2008, 7, 678-686.	1.8	7
147	Neuropeptidomics Strategies for Specific and Sensitive Identification of Endogenous Peptides. Molecular and Cellular Proteomics, 2007, 6, 1188-1197.	2.5	47
148	An Automated Method for Scanning LCâ^'MS Data Sets for Significant Peptides and Proteins, Including Quantitative Profiling and Interactive Confirmation. Journal of Proteome Research, 2007, 6, 2888-2895.	1.8	19
149	Determining the Overall Merit of Protein Identification Data Sets:Ârho-Diagrams andrho-Scores. Journal of Proteome Research, 2007, 6, 1997-2004.	1.8	12
150	MALDI Sample Preparation: the Ultra Thin Layer Method. Journal of Visualized Experiments, 2007, , 192.	0.2	21
151	Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Nature Biotechnology, 2007, 25, 651-655.	9.4	71
152	Using Annotated Peptide Mass Spectrum Libraries for Protein Identification. Journal of Proteome Research, 2006, 5, 1843-1849.	1.8	286
153	An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and specificity analysis. , 2006, , 289-315.		0
154	Detection of artifacts and peptide modifications in liquid chromatography/mass spectrometry data using two-dimensional signal intensity map data visualization. Rapid Communications in Mass Spectrometry, 2006, 20, 1558-1562.	0.7	22
155	Optimizing search conditions for the mass fingerprint-based identification of proteins. Proteomics, 2006, 6, 2079-2085.	1.3	18
156	Reproducibility of LC-MS-based protein identification. Journal of Experimental Botany, 2006, 57, 1509-1514.	2.4	27
157	SwePep, a Database Designed for Endogenous Peptides and Mass Spectrometry. Molecular and Cellular Proteomics, 2006, 5, 998-1005.	2.5	121
158	An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and specificity analysis. Proteomics, 2005, 5, 3475-3490.	1.3	332
159	Phosphotyrosine Signaling Networks in Epidermal Growth Factor Receptor Overexpressing Squamous Carcinoma Cells. Molecular and Cellular Proteomics, 2005, 4, 356-376.	2.5	121
160	Protein Identification in Complex Mixtures. Journal of Proteome Research, 2005, 4, 387-393.	1.8	24
161	Chapter 13 Simulation as a tool for optimizing proteome analysis. Comprehensive Analytical Chemistry, 2005, 46, 523-534.	0.7	0
162	Finding Protein Sequences Using PROWL. Current Protocols in Bioinformatics, 2004, 7, Unit 13.2.	25.8	9

#	Article	IF	Citations
163	The Statistical Significance of Protein Identification Results as a Function of the Number of Protein Sequences Searched. Journal of Proteome Research, 2004, 3, 979-982.	1.8	22
164	Probity:  A Protein Identification Algorithm with Accurate Assignment of the Statistical Significance of the Results. Journal of Proteome Research, 2004, 3, 32-36.	1.8	49
165	A Method for Assessing the Statistical Significance of Mass Spectrometry-Based Protein Identifications Using General Scoring Schemes. Analytical Chemistry, 2003, 75, 768-774.	3.2	448
166	A Modular Cross-Linking Approach for Exploring Protein Interactions. Journal of the American Chemical Society, 2003, 125, 2416-2425.	6.6	189
167	Informatics and data management in proteomics. Trends in Biotechnology, 2002, 20, s35-s38.	4.9	31
168	RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. Proteomics, 2002, 2, 36-47.	1.3	208
169	A model of random mass-matching and its use for automated significance testing in mass spectrometric proteome analysis. Proteomics, 2002, 2, 262.	1.3	35
170	RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. Proteomics, 2002, 2, 36-47.	1.3	44
171	Identifying the proteome: software tools. Current Opinion in Biotechnology, 2000, 11, 391-395.	3.3	134
172	Database searching with mass-spectrometric information. Trends in Biotechnology, 2000, 18, 22-27.	4.9	4
173	A Statistical Basis for Testing the Significance of Mass Spectrometric Protein Identification Results. Analytical Chemistry, 2000, 72, 999-1005.	3.2	119
174	Protein indentification using mass spectrometric information. Electrophoresis, 1998, 19, 998-1005.	1.3	207
175	A Strategy for Rapid, High-Confidence Protein Identification. Analytical Chemistry, 1997, 69, 3995-4001.	3.2	98
176	Determinants for Escherichia coli RNA polymerase assembly within the \hat{l}^2 subunit. Journal of Molecular Biology, 1997, 270, 648-662.	2.0	36
177	Laser desorption mass spectrometry of synthetic multiporphyrin arrays. Journal of Porphyrins and Phthalocyanines, 1997, 1, 93-99.	0.4	22
178	Peer Reviewed: Internet-Based Analytical Chemistry Resources: A Model Project. Analytical Chemistry, 1996, 68, 721A-726A.	3.2	40
179	Domain Organization of theEscherichia coliRNA Polymerase Ïf70Subunit. Journal of Molecular Biology, 1996, 263, 637-647.	2.0	133
180	Structural and functional properties of region II-plus of the malaria circumsporozoite protein Journal of Experimental Medicine, 1994, 180, 297-306.	4.2	132

#	Article	IF	CITATIONS
181	Crystallization of Proliferating Cell Nuclear Antigen (PCNA) from Saccharomyces cerevisiae. Journal of Molecular Biology, 1994, 241, 265-268.	2.0	40
182	Formation of fullerenes in MeV-ion sputtering from organic solids. Physical Review B, 1993, 47, 7560-7567.	1.1	42
183	Computer experiments on molecular ejection from an amorphous solid: Comparison to an analytic continuum mechanical model. Physical Review B, 1992, 46, 5090-5099.	1.1	62
184	Formation of fullerenes in MeV ion track plasmas. Chemical Physics Letters, 1992, 191, 345-350.	1.2	42
185	The influence of ion flux on defect production in MeV protonâ€irradiated silicon. Journal of Applied Physics, 1991, 70, 3025-3030.	1.1	59
186	Molecular-dynamics study of electronic sputtering of large organic molecules. Physical Review B, 1990, 42, 1895-1902.	1.1	70
187	Sputtering by fast ions based on a sum of impulses. Physical Review B, 1989, 40, 49-53.	1.1	170