Irkham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2364898/publications.pdf

Version: 2024-02-01

933447 839539 19 371 10 18 citations h-index g-index papers 21 21 21 387 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Co-reactant-on-Demand ECL: Electrogenerated Chemiluminescence by the in Situ Production of S ₂ O ₈ ^{2–} at Boron-Doped Diamond Electrodes. Journal of the American Chemical Society, 2016, 138, 15636-15641.	13.7	99
2	Electrogenerated Chemiluminescence by in Situ Production of Coreactant Hydrogen Peroxide in Carbonate Aqueous Solution at a Boron-Doped Diamond Electrode. Journal of the American Chemical Society, 2020, 142, 1518-1525.	13.7	70
3	Electrogenerated Chemiluminescence with Peroxydisulfate as a Coreactant Using Boron Doped Diamond Electrodes. Analytical Chemistry, 2018, 90, 12959-12963.	6.5	37
4	Electrogenerated Chemiluminescence of Luminol Mediated by Carbonate Electrochemical Oxidation at a Boron-Doped Diamond. Analytical Chemistry, 2021, 93, 2336-2341.	6.5	34
5	Boron-Doped Diamond Electrode Outperforms the State-of-the-Art Electrochemiluminescence from Microbeads Immunoassay. ACS Sensors, 2022, 7, 1145-1155.	7.8	20
6	Enhancing the Electrochemical Reduction of CO ₂ by Controlling the Flow Conditions: An Intermittent Flow Reduction System with a Boron-Doped Diamond Electrode. ACS Sustainable Chemistry and Engineering, 2021, 9, 5298-5303.	6.7	18
7	Electrochemical oxidation of palmitic acid solution using boron-doped diamond electrodes. Diamond and Related Materials, 2019, 99, 107464.	3.9	16
8	Hydroxide Ion Oxidation in Aqueous Solutions Using Boron-Doped Diamond Electrodes. Analytical Chemistry, 2017, 89, 7139-7144.	6.5	15
9	Quantification of electrogenerated chemiluminescence from tris(bipyridine)ruthenium(<scp>ii</scp>) and hydroxyl ions. Physical Chemistry Chemical Physics, 2020, 22, 15413-15417.	2.8	13
10	Modification of Boron-doped Diamond Electrodes with Platinum to Increase the Stability and Sensitivity of Haemoglobin-based Acrylamide Sensors. Sensors and Materials, 2019, 31, 1105.	0.5	12
11	Electrochemical Oxidation Behavior of Nitrogen Dioxide for Gas Detection Using Boron Doped Diamond Electrodes. Electroanalysis, 2022, 34, 752-760.	2.9	10
12	Oxidation of hydroxide ions in weak basic solutions using boron-doped diamond electrodes: effect of the buffer capacity. Analyst, The, 2019, 144, 4499-4504.	3.5	8
13	Effect of Boron-Doping Level and Surface Termination in Diamond on Electrogenerated Chemiluminescence. ACS Applied Electronic Materials, 2021, 3, 4180-4188.	4.3	7
14	Nickel–Cobalt Modified Boron-Doped Diamond as an Electrode for a Urea/H ₂ O ₂ Fuel Cell. Bulletin of the Chemical Society of Japan, 2021, 94, 2922-2928.	3.2	4
15	Simultaneous electrochemical detection of ozone and free chlorine with a boron-doped diamond electrode. Analyst, The, 2022, 147, 1655-1662.	3.5	3
16	Preparation of boron-doped diamond modified by bimetal nickel and zinc. IOP Conference Series: Materials Science and Engineering, 2020, 902, 012001.	0.6	1
17	Preparation and characterization of \hat{l}^2 -Cyclodextrin/Fe ₃ O ₄ nanocomposite. IOP Conference Series: Materials Science and Engineering, 2020, 902, 012005.	0.6	1
18	Detection of dissolved hydrogen in water using platinum-modified boron doped diamond electrodes. Journal of Electroanalytical Chemistry, 2022, 917, 116425.	3.8	1

#	Article	IF	CITATIONS
19	Study of AUTO-LION (Automatic Lighting Rumpon) on Fisheries of Stationary Lift Net in Semarang, Central Java. IOP Conference Series: Earth and Environmental Science, 2018, 116, 012052.	0.3	0