Mats Holmstrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/236428/publications.pdf

Version: 2024-02-01

131 papers 5,449 citations

42 h-index 95218 68 g-index

154 all docs

154 docs citations

154 times ranked

2533 citing authors

#	Article	IF	CITATIONS
1	Solar cycle variation of ion escape from Mars. Icarus, 2023, 393, 114610.	1.1	13
2	Estimating ion escape from unmagnetized planets. Annales Geophysicae, 2022, 40, 83-89.	0.6	2
3	CMEs and SEPs During November–December 2020: A Challenge for Realâ€Time Space Weather Forecasting. Space Weather, 2022, 20, .	1.3	16
4	An Eastward Current Encircling Mercury. Geophysical Research Letters, 2022, 49, .	1.5	8
5	<i>Menura</i> : a code for simulating the interaction between a turbulent solar wind and solar system bodies. Annales Geophysicae, 2022, 40, 281-297.	0.6	2
6	SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo. Space Science Reviews, 2021, 217, 11.	3.7	26
7	CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport. Space Weather, 2021, 19, e2020SW002654.	1.3	18
8	Pre-flight Calibration and Near-Earth Commissioning Results of the Mercury Plasma Particle Experiment (MPPE) Onboard MMO (Mio). Space Science Reviews, 2021, 217, 1.	3.7	32
9	Triton's Variable Interaction With Neptune's Magnetospheric Plasma. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029740.	0.8	9
10	Does Phobos reflect solar wind protons? Mars Express special flyby operations with and without the presence of Phobos. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006969.	1.5	4
11	MAVEN Observations of Periodic Low-altitude Plasma Clouds at Mars. Astrophysical Journal Letters, 2021, 922, L33.	3.0	19
12	Evolution of the Earth's Polar Outflow From Midâ€Archean to Present. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027837.	0.8	10
13	Mars' Ionopause: A Matter of Pressures. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028145.	0.8	35
14	Observations of Sounder Accelerated Electrons by Mars Express. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027206.	0.8	1
15	Active Experiments Beyond the Earth: Plasma Effects of Sounding Radar Operations in the Ionospheres of Venus, Mars, and the Jovian System. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	2
16	Threeâ€Dimensional Modeling of Callisto's Surface Sputtered Exosphere Environment. Journal of Geophysical Research: Space Physics, 2019, 124, 7157-7169.	0.8	12
17	The Martian Bow Shock Over Solar Cycle 23–24 as Observed by the Mars Express Mission. Journal of Geophysical Research: Space Physics, 2019, 124, 4761-4772.	0.8	24
18	Transit Lyman- $\langle i \rangle \hat{l} \pm \langle j \rangle$ signatures of terrestrial planets in the habitable zones of M dwarfs. Astronomy and Astrophysics, 2019, 623, A131.	2.1	18

#	Article	IF	CITATIONS
19	Variability of Precipitating Ion Fluxes During the September 2017 Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 420-432.	0.8	6
20	Oxygen Ion Energization at Mars: Comparison of MAVEN and Mars Express Observations to Global Hybrid Simulation. Journal of Geophysical Research: Space Physics, 2018, 123, 1678-1689.	0.8	21
21	Solar wind dynamics around a comet. Astronomy and Astrophysics, 2018, 620, A35.	2.1	23
22	lon Escape From Mars Through Time: An Extrapolation of Atmospheric Loss Based on 10 Years of Mars Express Measurements. Journal of Geophysical Research E: Planets, 2018, 123, 3051-3060.	1.5	29
23	Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals. Space Science Reviews, 2018, 214, 1.	3.7	47
24	Ions Accelerated by Sounderâ€Plasma Interaction as Observed by Mars Express. Journal of Geophysical Research: Space Physics, 2018, 123, 9802-9814.	0.8	5
25	First Observation of Transport of Solar Wind Protons Scattered From Magnetic Anomalies Into the Near Lunar Wake: Observations by SARA/Chandrayaanâ€1. Geophysical Research Letters, 2018, 45, 8826-8833.	1.5	6
26	A modelling approach to infer the solar wind dynamic pressure from magnetic field observations inside Mercury's magnetosphere. Astronomy and Astrophysics, 2018, 614, A132.	2.1	24
27	The Largest Electron Differential Energy Flux Observed at Mars by the Mars Express Spacecraft, 2004-2016. Journal of Geophysical Research: Space Physics, 2018, 123, 6576-6590.	0.8	0
28	Responses of the Martian Magnetosphere to an Interplanetary Coronal Mass Ejection: MAVEN Observations and LatHyS Results. Geophysical Research Letters, 2018, 45, 7891-7900.	1.5	19
29	Observations and Impacts of the 10 September 2017 Solar Events at Mars: An Overview and Synthesis of the Initial Results. Geophysical Research Letters, 2018, 45, 8871-8885.	1.5	77
30	The September 2017 SEP Event in Context With the Current Solar Cycle: Mars Express ASPERAâ€3/IMA and MAVEN/SEP Observations. Geophysical Research Letters, 2018, 45, 7306-7311.	1.5	14
31	Modeling the Evolution and Propagation of 10 September 2017 CMEs and SEPs Arriving at Mars Constrained by Remote Sensing and In Situ Measurement. Space Weather, 2018, 16, 1156-1169.	1.3	61
32	Ceres interaction with the solar wind. Geophysical Research Letters, 2017, 44, 2070-2077.	1.5	9
33	New suprathermal proton population around the Moon: Observation by SARA on Chandrayaanâ€1. Geophysical Research Letters, 2017, 44, 4540-4548.	1.5	2
34	Solar wind―and EUVâ€dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements. Journal of Geophysical Research: Space Physics, 2017, 122, 7279-7290.	0.8	33
35	Mars Under Primordial Solar Wind Conditions: Mars Express Observations of the Strongest CME Detected at Mars Under Solar Cycle #24 and its Impact on Atmospheric Ion Escape. Geophysical Research Letters, 2017, 44, 10,805.	1.5	21
36	Global Marsâ€solar wind coupling and ion escape. Journal of Geophysical Research: Space Physics, 2017, 122, 8051-8062.	0.8	43

3

#	Article	IF	Citations
37	Interplanetary coronal mass ejection observed at STEREOâ€A, Mars, comet 67P/Churyumovâ€Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9ÂAU. Journal of Geophysical Research: Space Physics, 2017, 122, 7865-7890.	0.8	87
38	The role of plasma slowdown in the generation of Rhea's Alfv \tilde{A} @n wings. Journal of Geophysical Research: Space Physics, 2017, 122, 1778-1788.	0.8	8
39	Mars plasma system response to solar wind disturbances during solar minimum. Journal of Geophysical Research: Space Physics, 2017, 122, 6611-6634.	0.8	24
40	On the formation of Ganymede's surface brightness asymmetries: Kinetic simulations of Ganymede's magnetosphere. Geophysical Research Letters, 2016, 43, 4745-4754.	1.5	38
41	Solar XUV and ENAâ€driven water loss from early Venus' steam atmosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 4718-4732.	0.8	31
42	Plasma observations during the Mars atmospheric "plume―event of March–April 2012. Journal of Geophysical Research: Space Physics, 2016, 121, 3139-3154.	0.8	10
43	Annual variations in the Martian bow shock location as observed by the Mars Express mission. Journal of Geophysical Research: Space Physics, 2016, 121, 11,474.	0.8	44
44	Alfv \tilde{A} @n wings in the lunar wake: The role of pressure gradients. Journal of Geophysical Research: Space Physics, 2016, 121, 10,698.	0.8	17
45	Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate. Geophysical Research Letters, 2016, 43, 10,574.	1.5	34
46	Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 596, A42.	2.1	38
47	Characteristics of proton velocity distribution functions in the near-lunar wake from Chandrayaan-1/SWIM observations. Icarus, 2016, 271, 120-130.	1.1	13
48	Solar wind interaction with the Reiner Gamma crustal magnetic anomaly: Connecting source magnetization to surface weathering. Icarus, 2016, 266, 261-266.	1.1	32
49	The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations. Journal of Geophysical Research E: Planets, 2015, 120, 1298-1309.	1.5	84
50	A new view on the solar wind interaction with the Moon. Geoscience Letters, 2015, 2, .	1.3	37
51	Seasonal variation of Martian pick-up ions: Evidence of breathing exosphere. Planetary and Space Science, 2015, 119, 54-61.	0.9	56
52	Callisto plasma interactions: Hybrid modeling including induction by a subsurface ocean. Journal of Geophysical Research: Space Physics, 2015, 120, 4877-4889.	0.8	23
53	On the confinement of lunar induced magnetic fields. Geophysical Research Letters, 2015, 42, 6931-6938.	1.5	9
54	Solar wind plasma interaction with Gerasimovich lunar magnetic anomaly. Journal of Geophysical Research: Space Physics, 2015, 120, 4719-4735.	0.8	29

#	Article	IF	Citations
55	Mars as a comet: Solar wind interaction on a large scale. Planetary and Space Science, 2015, 119, 43-47.	0.9	12
56	STELLAR WIND INDUCED SOFT X-RAY EMISSION FROM CLOSE-IN EXOPLANETS. Astrophysical Journal Letters, 2015, 799, L15.	3.0	7
57	Solar windâ€driven thermospheric winds over the Venus North Polar region. Geophysical Research Letters, 2014, 41, 4413-4419.	1.5	4
58	Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths― Astronomy and Astrophysics, 2014, 562, A116.	2.1	63
59	Magnetic moment and plasma environment of HD 209458b as determined from Lyl± observations. Science, 2014, 346, 981-984.	6.0	119
60	On lunar exospheric column densities and solar wind access beyond the terminator from ROSAT soft X-ray observations of solar wind charge exchange. Journal of Geophysical Research E: Planets, 2014, 119, 1459-1478.	1.5	24
61	Mars Express investigations of Phobos and Deimos. Planetary and Space Science, 2014, 102, 18-34.	0.9	54
62	Lunar dayside current in the terrestrial lobe: ARTEMIS observations. Journal of Geophysical Research: Space Physics, 2014, 119, 3381-3391.	0.8	10
63	First direct observation of sputtered lunar oxygen. Journal of Geophysical Research: Space Physics, 2014, 119, 709-722.	0.8	29
64	Effects of protons reflected by lunar crustal magnetic fields on the global lunar plasma environment. Journal of Geophysical Research: Space Physics, 2014, 119, 6095-6105.	0.8	36
65	ARTEMIS observations of extreme diamagnetic fields in the lunar wake. Geophysical Research Letters, 2014, 41, 3766-3773.	1.5	34
66	The extension of ionospheric holes into the tail of Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 6940-6953.	0.8	17
67	XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape. Astrobiology, 2013, 13, 1030-1048.	1.5	53
68	Solar cycle effects on the ion escape from Mars. Geophysical Research Letters, 2013, 40, 6028-6032.	1.5	58
69	Proton entry into the nearâ€lunar plasma wake for magnetic field aligned flow. Geophysical Research Letters, 2013, 40, 2913-2917.	1.5	18
70	A largeâ€scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation. Geophysical Research Letters, 2013, 40, 1273-1278.	1.5	16
71	Energetic neutral atom imaging of the lunar surface. Journal of Geophysical Research: Space Physics, 2013, 118, 3937-3945.	0.8	47
72	The lunar wake current systems. Geophysical Research Letters, 2013, 40, 17-21.	1.5	46

#	Article	IF	Citations
73	Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes. Earth, Planets and Space, 2012, 64, 135-148.	0.9	47
74	The interaction between the Moon and the solar wind. Earth, Planets and Space, 2012, 64, 237-245.	0.9	80
75	INTERACTION OF SOLAR WIND WITH MOON: AN OVERVIEW ON THE RESULTS FROM THE SARA EXPERIMENT ABOARD CHANDRAYAAN-1., 2012, , 35-55.		4
76	Energetic neutral atom observations of magnetic anomalies on the lunar surface. Journal of Geophysical Research, 2012, 117 , .	3.3	44
77	A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations. Journal of Geophysical Research, 2012, 117, .	3.3	28
78	The effects of lunar surface plasma absorption and solar wind temperature anisotropies on the solar wind proton velocity space distributions in the lowâ€altitude lunar plasma wake. Journal of Geophysical Research, 2012, 117, .	3.3	23
79	Empirical energy spectra of neutralized solar wind protons from the lunar regolith. Journal of Geophysical Research, 2012, 117, .	3.3	53
80	Strong influence of lunar crustal fields on the solar wind flow. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	125
81	Scattering function for energetic neutral hydrogen atoms off the lunar surface. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	30
82	Proton and hydrogen atom transport in the Martian upper atmosphere with an induced magnetic field. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	35
83	Exoplanet Upper Atmosphere Environment Characterization. Proceedings of the International Astronomical Union, 2011, 7, 525-532.	0.0	3
84	Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. lcarus, 2011, 215, 475-484.	1.1	114
85	Hydrogen ENA-cloud observation and modeling as a tool to study star-exoplanet interaction. Astrophysics and Space Science, 2011, 335, 9-23.	0.5	19
86	UV transit observations of EUV-heated expanded thermospheres of Earth-like exoplanets around M-stars: testing atmosphere evolution scenarios. Astrophysics and Space Science, 2011, 335, 39-50.	0.5	24
87	Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars. Annales Geophysicae, 2011, 29, 511-528.	0.6	22
88	Hybrid Modeling of Plasmas. , 2010, , 451-458.		13
89	A comparison of global models for the solar wind interaction with Mars. Icarus, 2010, 206, 139-151.	1.1	108
90	First observation of a miniâ€magnetosphere above a lunar magnetic anomaly using energetic neutral atoms. Geophysical Research Letters, 2010, 37, .	1.5	114

#	Article	IF	CITATIONS
91	Venusian bow shock as seen by the ASPERAâ€4 ion instrument on Venus Express. Journal of Geophysical Research, 2010, 115, .	3.3	9
92	Dynamics of solar wind protons reflected by the Moon. Journal of Geophysical Research, 2010, 115, .	3.3	48
93	Protons in the nearâ€lunar wake observed by the Subâ€keV Atom Reflection Analyzer on board Chandrayaanâ€1. Journal of Geophysical Research, 2010, 115, .	3.3	42
94	Backscattered solar wind protons by Phobos. Journal of Geophysical Research, 2010, 115, .	3.3	19
95	Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space. Planetary and Space Science, 2009, 57, 2132-2134.	0.9	130
96	Atmospheric origin of cold ion escape from Mars. Geophysical Research Letters, 2009, 36, .	1.5	49
97	Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planetary and Space Science, 2008, 56, 873-880.	0.9	102
98	Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b. Nature, 2008, 451, 970-972.	13.7	167
99	Holmström et al. reply. Nature, 2008, 456, E1-E2.	13.7	3
100	Solar forcing and planetary ion escape from Mars. Geophysical Research Letters, 2008, 35, .	1.5	77
101	Energetic neutral atom imaging of comets. Geophysical Research Letters, 2008, 35, .	1.5	3
102	A cometâ€like escape of ionospheric plasma from Mars. Geophysical Research Letters, 2008, 35, .	1.5	94
103	Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERAâ€3 and MARSIS measurements. Journal of Geophysical Research, 2008, 113, .	3.3	70
104	Tailward flow of energetic neutral atoms observed at Venus. Journal of Geophysical Research, 2008, 113, .	3.3	20
105	Tailward flow of energetic neutral atoms observed at Mars. Journal of Geophysical Research, 2008, 113, .	3.3	30
106	The role of intrinsic magnetic fields in planetary evolution and habitability: the planetary protection aspect. Proceedings of the International Astronomical Union, 2008, 4, 283-294.	0.0	0
107	Simulations of solar wind charge exchange X-ray emissions at Venus. Geophysical Research Letters, 2007, 34, .	1.5	16
108	The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planetary and Space Science, 2007, 55, 1772-1792.	0.9	214

#	Article	IF	Citations
109	The loss of ions from Venus through the plasma wake. Nature, 2007, 450, 650-653.	13.7	168
110	Asymmetries in Mars' Exosphere. Space Science Reviews, 2007, 126, 435-445.	3.7	13
111	Auroral Plasma Acceleration Above Martian Magnetic Anomalies. Space Science Reviews, 2007, 126, 333-354.	3.7	28
112	Energetic Hydrogen and Oxygen Atoms Observed on the Nightside of Mars. Space Science Reviews, 2007, 126, 267-297.	3.7	24
113	The Hydrogen Exospheric Density Profile Measured with ASPERA-3/NPD. Space Science Reviews, 2007, 126, 447-467.	3.7	42
114	IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express. Space Science Reviews, 2007, 126, 239-266.	3.7	21
115	Locations of Atmospheric Photoelectron Energy Peaks Within the Mars Environment. Space Science Reviews, 2007, 126, 389-402.	3.7	81
116	Energisation of O+ and O+ 2 Ions at Mars: An Analysis of a 3-D Quasi-Neutral Hybrid Model Simulation. Space Science Reviews, 2007, 126, 39-62.	3.7	11
117	The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. Space Science Reviews, 2007, 126, 113-164.	3.7	241
118	The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. , 2007, , 113-164.		2
119	Solar wind plasma protrusion into the martian magnetosphere: ASPERA-3 observations. Icarus, 2006, 182, 343-349.	1.1	21
120	Structure of the martian wake. Icarus, 2006, 182, 329-336.	1.1	81
121	Carbon dioxide photoelectron energy peaks at Mars. Icarus, 2006, 182, 371-382.	1.1	105
122	Low energy neutral atoms imaging of the Moon. Planetary and Space Science, 2006, 54, 132-143.	0.9	33
123	Mass composition of the escaping plasma at Mars. Icarus, 2006, 182, 320-328.	1.1	103
124	Plasma Acceleration Above Martian Magnetic Anomalies. Science, 2006, 311, 980-983.	6.0	111
125	OBSERVATIONS IN THE SHADOW OF MARS BY THE NEUTRAL PARTICLE IMAGER. , 2006, , 119-134.		4
126	Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission. Journal of Earth System Science, 2005, 114, 749-760.	0.6	35

#	Article	IF	CITATION
127	Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express. Science, 2004, 305, 1933-1936.	6.0	204
128	X rays from solar wind charge exchange at Mars: A comparison of simulations and observations. Geophysical Research Letters, 2004, 31 , .	1.5	27
129	Energetic neutral atoms at Mars 1. Imaging of solar wind protons. Journal of Geophysical Research, 2002, 107, SSH 4-1.	3.3	53
130	Energetic neutral atoms at Mars 4. Imaging of planetary oxygen. Journal of Geophysical Research, 2002, 107, SSH 7-1.	3.3	46
131	X-ray imaging of the solar wind-Mars interaction. Geophysical Research Letters, 2001, 28, 1287-1290.	1.5	43