
Guoliang Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2364035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using headspace solid phase micro-extraction for analysis of aromatic compounds during alcoholic fermentation of red wine. Food Chemistry, 2011, 125, 743-749.	8.2	61
2	Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2020, 13, 168.	6.2	42
3	Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochemistry, 2016, 51, 568-577.	3.7	37
4	Decreased fluidity of cell membranes causes a metal ion deficiency in recombinant Saccharomyces cerevisiae producing carotenoids. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 525-535.	3.0	32
5	Effects of three indigenous non-Saccharomyces yeasts and their pairwise combinations in co-fermentation with Saccharomyces cerevisiae on volatile compounds of Petit Manseng wines. Food Chemistry, 2022, 368, 130807.	8.2	28
6	Synergistic effect enhances 2-phenylethyl acetate production in the mixed fermentation of Hanseniaspora vineae and Saccharomyces cerevisiae. Process Biochemistry, 2020, 90, 44-49.	3.7	27
7	A pH control strategy for increased β-carotene production during batch fermentation by recombinant industrial wine yeast. Process Biochemistry, 2013, 48, 195-200.	3.7	24
8	Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Microbial Cell Factories, 2022, 21, 3.	4.0	24
9	Distinctive chemical and aromatic composition of red wines produced by Saccharomyces cerevisiae co-fermentation with indigenous and commercial non-Saccharomyces strains. Food Bioscience, 2021, 41, 100925.	4.4	21
10	Use of Torulaspora delbrueckii and Hanseniaspora vineae co-fermentation with Saccharomyces cerevisiae to improve aroma profiles and safety quality of Petit Manseng wines. LWT - Food Science and Technology, 2022, 161, 113360.	5.2	20
11	Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vineae and Saccharomyces cerevisiae. Food Microbiology, 2020, 90, 103460.	4.2	19
12	Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation. PLoS ONE, 2017, 12, e0188385.	2.5	13
13	Effect of Unsaturated Fatty Acids on Intra-Metabolites and Aroma Compounds of Saccharomyces cerevisiae in Wine Fermentation. Foods, 2021, 10, 277.	4.3	12
14	Reduction of fatty acid flux at low temperature led to enhancement of β-carotene biosynthesis in recombinant Saccharomyces cerevisiae. Korean Journal of Chemical Engineering, 2015, 32, 1354-1360.	2.7	5
15	Effects of mediums on fermentation behaviour and aroma composition in pure and mixed culture of <i>Saccharomyces cerevisiae</i> with <i>Torulaspora delbrueckii</i> . International Journal of Food Science and Technology, 2021, 56, 5107-5118.	2.7	2