
Andrew Hoell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2363932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subseasonal Meteorological Drought Development over the Central United States during Spring. Journal of Climate, 2022, 35, 2525-2547.	3.2	7
2	A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan. Earth System Science Data, 2022, 14, 3115-3135.	9.9	11
3	The Modulation of Daily Southern Africa Precipitation by El Niño–Southern Oscillation across the Summertime Wet Season. Journal of Climate, 2021, 34, 1115-1134.	3.2	6
4	Development of a Flash Drought Intensity Index. Atmosphere, 2021, 12, 741.	2.3	25
5	Preconditions for extreme wet winters over the contiguous United States. Weather and Climate Extremes, 2021, 33, 100333.	4.1	4
6	Characteristics and Predictability of Midwestern United States Drought. Journal of Hydrometeorology, 2021, , .	1.9	0
7	Characteristics, precursors, and potential predictability of Amu Darya Drought in an Earth system model large ensemble. Climate Dynamics, 2020, 55, 2185-2206.	3.8	10
8	Facility for Weather and Climate Assessments (FACTS): A Community Resource for Assessing Weather and Climate Variability. Bulletin of the American Meteorological Society, 2020, 101, E1214-E1224.	3.3	24
9	Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nature Climate Change, 2020, 10, 191-199.	18.8	210
10	Lessons Learned from the 2017 Flash Drought across the U.S. Northern Great Plains and Canadian Prairies. Bulletin of the American Meteorological Society, 2020, 101, E2171-E2185.	3.3	28
11	Confirmation for and Predictability of Distinct U.S. Impacts of El Niño Flavors. Journal of Climate, 2020, 33, 5971-5991.	3.2	5
12	A 450-Year Perspective on California Precipitation "Flips― Journal of Climate, 2020, 33, 10221-10237.	3.2	9
13	Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Climate Dynamics, 2019, 52, 1739-1760.	3.8	34
14	Recognizing the Famine Early Warning Systems Network: Over 30 Years of Drought Early Warning Science Advances and Partnerships Promoting Global Food Security. Bulletin of the American Meteorological Society, 2019, 100, 1011-1027.	3.3	111
15	Towards Probabilistic Multivariate ENSO Monitoring. Geophysical Research Letters, 2019, 46, 10532-10540.	4.0	64
16	On the interpretation of seasonal Southern Africa precipitation prediction skill estimates during Austral summer. Climate Dynamics, 2019, 53, 6769-6783.	3.8	4
17	Introduction to Explaining Extreme Events of 2017 from a Climate Perspective. Bulletin of the American Meteorological Society, 2019, 100, S1-S4.	3.3	5
18	Explaining Extreme Events of 2017 from a Climate Perspective. Bulletin of the American Meteorological Society, 2019, 100, S1-S117.	3.3	27

ANDREW HOELL

#	Article	lF	CITATIONS
19	Examining the Potential Contributions of Extreme "Western V―Sea Surface Temperatures to the 2017 March–June East African Drought. Bulletin of the American Meteorological Society, 2019, 100, S55-S60.	3.3	35
20	Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous hydrometeorological events over East Africa. Climate Dynamics, 2019, 53, 7411-7427.	3.8	46
21	Extreme California Rains During Winter 2015/16: A Change in El Niño Teleconnection?. Bulletin of the American Meteorological Society, 2018, 99, S49-S53.	3.3	18
22	Thermodynamic and Dynamic Causes of Pluvial Conditions During the Last Glacial Maximum in Western North America. Geophysical Research Letters, 2018, 45, 335-345.	4.0	23
23	Cold Season Southwest Asia Precipitation Sensitivity to El Niño–Southern Oscillation Events. Journal of Climate, 2018, 31, 4463-4482.	3.2	19
24	Predictability and Prediction of Southern California Rains during Strong El Niño Events: A Focus on the Failed 2016 Winter Rains. Journal of Climate, 2018, 31, 555-574.	3.2	19
25	Austral summer Southern Africa precipitation extremes forced by the El Niño-Southern oscillation and the subtropical Indian Ocean dipole. Climate Dynamics, 2018, 50, 3219-3236.	3.8	23
26	Advancing Science and Services during the 2015/16 El Niño: The NOAA El Niño Rapid Response Field Campaign. Bulletin of the American Meteorological Society, 2018, 99, 975-1001.	3.3	23
27	Middle East and Southwest Asia Daily Precipitation Characteristics Associated with the Madden–Julian Oscillation during Boreal Winter. Journal of Climate, 2018, 31, 8843-8860.	3.2	15
28	Introduction to Explaining Extreme Events of 2016 from a Climate Perspective. Bulletin of the American Meteorological Society, 2018, 99, S1-S6.	3.3	50
29	Modulation of the Southern Africa precipitation response to the El Niño Southern Oscillation by the subtropical Indian Ocean Dipole. Climate Dynamics, 2017, 48, 2529-2540.	3.8	66
30	The influence of tropical forcing on extreme winter precipitation in the western Himalaya. Climate Dynamics, 2017, 48, 1213-1232.	3.8	46
31	Reconciling Theories for Human and Natural Attribution of Recent East Africa Drying. Journal of Climate, 2017, 30, 1939-1957.	3.2	28
32	Statistical Connection between the Madden–Julian Oscillation and Large Daily Precipitation Events in West Africa. Journal of Climate, 2017, 30, 1999-2010.	3.2	18
33	Oceanic Origins of Historical Southwest Asia Precipitation During the Boreal Cold Season. Journal of Climate, 2017, 30, 2885-2903.	3.2	26
34	Climatology and Interannual Variability of Boreal Spring Wet Season Precipitation in the Eastern Horn of Africa and Implications for Its Recent Decline. Journal of Climate, 2017, 30, 3867-3886.	3.2	49
35	The Hydrologic Effects of Synchronous El Niño–Southern Oscillation and Subtropical Indian Ocean Dipole Events over Southern Africa. Journal of Hydrometeorology, 2017, 18, 2407-2424.	1.9	9
36	Assessing the Contributions of Local and East Pacific Warming to the 2015 Droughts in Ethiopia and Southern Africa. Bulletin of the American Meteorological Society, 2016, 97, S75-S80.	3.3	48

ANDREW HOELL

#	Article	IF	CITATIONS
37	Introduction to Explaining Extreme Events of 2015 from a Climate Perspective. Bulletin of the American Meteorological Society, 2016, 97, S1-S3.	3.3	6
38	Explaining Extreme Events of 2015 from a Climate Perspective. Bulletin of the American Meteorological Society, 2016, 97, S1-S145.	3.3	85
39	Inter- and Intra-annual precipitation variability and associated relationships to ENSO and the IOD in southern Africa. International Journal of Climatology, 2016, 36, 1643-1656.	3.5	31
40	Does El Niño intensity matter for California precipitation?. Geophysical Research Letters, 2016, 43, 819-825.	4.0	98
41	A Review of Drought in the Middle East and Southwest Asia. Journal of Climate, 2016, 29, 8547-8574.	3.2	163
42	Summary and Broader Context. Bulletin of the American Meteorological Society, 2016, 97, S141-S145.	3.3	1
43	Drought in the Middle East and Central–Southwest Asia During Winter 2013/14. Bulletin of the American Meteorological Society, 2015, 96, S71-S76.	3.3	23
44	The Leading Mode of Observed and CMIP5 ENSO-Residual Sea Surface Temperatures and Associated Changes in Indo-Pacific Climate*. Journal of Climate, 2015, 28, 4309-4329.	3.2	61
45	El Niño–Southern Oscillation diversity and Southern Africa teleconnections during Austral Summer. Climate Dynamics, 2015, 45, 1583-1599.	3.8	52
46	The Forcing of Southwestern Asia Teleconnections by Low-Frequency Sea Surface Temperature Variability during Boreal Winter. Journal of Climate, 2015, 28, 1511-1526.	3.2	36
47	The Forcing of Monthly Precipitation Variability over Southwest Asia during the Boreal Cold Season. Journal of Climate, 2015, 28, 7038-7056.	3.2	36
48	Drought in the Middle East and Central–Southwest Asia During Winter 2013/14. Bulletin of the American Meteorological Society, 2015, 96, S71-S76.	3.3	0
49	The regional forcing of Northern hemisphere drought during recent warm tropical west Pacific Ocean La Niña events. Climate Dynamics, 2014, 42, 3289-3311.	3.8	66
50	Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Climate Dynamics, 2014, 43, 1645-1660.	3.8	76
51	La Niña diversity and Northwest Indian Ocean Rim teleconnections. Climate Dynamics, 2014, 43, 2707-2724.	3.8	45
52	Disruptions of El Niño–Southern Oscillation Teleconnections by the Madden–Julian Oscillation. Geophysical Research Letters, 2014, 41, 998-1004.	4.0	46
53	The ENSO-Related West Pacific Sea Surface Temperature Gradient. Journal of Climate, 2013, 26, 9545-9562.	3.2	79
54	Intraseasonal and Seasonal-to-Interannual Indian Ocean Convection and Hemispheric Teleconnections. Journal of Climate, 2013, 26, 8850-8867.	3.2	38

ANDREW HOELL

#	Article	IF	CITATIONS
55	Is the North American monsoon selfâ€limiting?. Geophysical Research Letters, 2013, 40, 4442-4447.	4.0	4
56	The Leading Pattern of Intraseasonal and Interannual Indian Ocean Precipitation Variability and Its Relationship with Asian Circulation during the Boreal Cold Season. Journal of Climate, 2012, 25, 7509-7526.	3.2	48
57	Dynamics and Thermodynamics of the Regional Response to the Indian Monsoon Onset. Journal of Climate, 2011, 24, 5879-5886.	3.2	11
58	Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11081-11086.	7.1	374
59	Examining the wintertime response to tropical convection over the Indian Ocean by modifying convective heating in a full atmospheric model. Geophysical Research Letters, 2007, 34, .	4.0	36