## Nicholas L Wagner

## List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2363861/nicholas-l-wagner-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 62 3,868 33 h-index g-index citations papers 65 6.9 4.58 4,423 avg, IF L-index ext. citations ext. papers

| #  | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF   | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 62 | Laser imaging nephelometer for aircraft deployment. <i>Atmospheric Measurement Techniques</i> , <b>2022</b> , 15, 1093-1105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4    | Ο         |
| 61 | THE NASA ATMOSPHERIC TOMOGRAPHY (ATom) MISSION: Imaging the Chemistry of the Global Atmosphere. <i>Bulletin of the American Meteorological Society</i> , <b>2021</b> , 1-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.1  | 6         |
| 60 | Complex refractive indices in the ultraviolet and visible spectral region for highly absorbing non-spherical biomass burning aerosol. <i>Atmospheric Chemistry and Physics</i> , <b>2021</b> , 21, 7235-7252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.8  | 1         |
| 59 | Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index. <i>Atmospheric Measurement Techniques</i> , <b>2021</b> , 14, 4517-4542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4    | 4         |
| 58 | Global Measurements of Brown Carbon and Estimated Direct Radiative Effects. <i>Geophysical Research Letters</i> , <b>2020</b> , 47, e2020GL088747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.9  | 26        |
| 57 | Evidence in biomass burning smoke for a light-absorbing aerosol with properties intermediate between brown and black carbon. <i>Aerosol Science and Technology</i> , <b>2019</b> , 53, 976-989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.4  | 22        |
| 56 | Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products. <i>Atmospheric Measurement Techniques</i> , <b>2019</b> , 12, 3081-3099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4    | 38        |
| 55 | Investigating biomass burning aerosol morphology using a laser imaging nephelometer. <i>Atmospheric Chemistry and Physics</i> , <b>2018</b> , 18, 1879-1894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.8  | 11        |
| 54 | An intercomparison of aerosol absorption measurements conducted during the SEAC4RS campaign. <i>Aerosol Science and Technology</i> , <b>2018</b> , 52, 1012-1027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.4  | 14        |
| 53 | Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes. <i>AIMS Environmental Science</i> , <b>2018</b> , 5, 195-215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9  | 1         |
| 52 | Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign. <i>Atmospheric Measurement Techniques</i> , <b>2018</b> , 11, 369-383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4    | 49        |
| 51 | Cavity enhanced spectroscopy for measurement of nitrogen oxides in the Anthropocene: results from the Seoul tower during MAPS 2015. <i>Faraday Discussions</i> , <b>2017</b> , 200, 529-557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6  | 17        |
| 50 | Emissions of Glyoxal and Other Carbonyl Compounds from Agricultural Biomass Burning Plumes Sampled by Aircraft. <i>Environmental Science &amp; Environmental Science &amp; Environmental</i> | 10.3 | 25        |
| 49 | Secondary organic aerosol formation from in situ OH, O<sub>3</sub>, and NO<sub>3</sub> oxidation of ambient forest air in an oxidation flow reactor <b>2017</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 1         |
| 48 | Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. <i>Atmospheric Chemistry and Physics</i> , <b>2017</b> , 17, 5063-5078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.8  | 64        |
| 47 | Secondary organic aerosol formation from in situ OH, O<sub>3</sub>, and NO<sub>3</sub> oxidation of ambient forest air in an oxidation flow reactor. <i>Atmospheric Chemistry and Physics</i> , <b>2017</b> , 17, 5331-5354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.8  | 46        |
| 46 | Aerosol optical properties in the southeastern United States in summer [Part]: Hygroscopic growth. <i>Atmospheric Chemistry and Physics</i> , <b>2016</b> , 16, 4987-5007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.8  | 71        |

## (2013-2016)

| 45 | Aerosol optical properties in the southeastern United States in summer Partiz: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters. <i>Atmospheric Chemistry and Physics</i> , <b>2016</b> , 16, 5009-5019                                  | 6.8   | 33  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 44 | Parameterization of single-scattering albedo (SSA) and absorption figstrfh exponent (AAE) with EC / OC for aerosol emissions from biomass burning. <i>Atmospheric Chemistry and Physics</i> , <b>2016</b> , 16, 9549                                                     | -9561 | 104 |
| 43 | Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2016</b> , 121, 7079-7087                                                                                                        | 4.4   | 13  |
| 42 | Evaluating N2O5 heterogeneous hydrolysis parameterizations for CalNex 2010. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2016</b> , 121, 5051-5070                                                                                                         | 4.4   | 26  |
| 41 | Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013. <i>Atmospheric Measurement Techniques</i> , <b>2016</b> , 9, 3063-3093                                                                     | 4     | 50  |
| 40 | Modeling the weekly cycle of NOx and CO emissions and their impacts on O3 in the Los Angeles-South Coast Air Basin during the CalNex 2010 field campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2016</b> , 121, 1340-1360                           | 4.4   | 43  |
| 39 | Design of a Novel Open-Path Aerosol Extinction Cavity Ringdown Spectrometer. <i>Aerosol Science and Technology</i> , <b>2015</b> , 49, 717-726                                                                                                                           | 3.4   | 12  |
| 38 | Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model. <i>Atmospheric Chemistry and Physics</i> , <b>2015</b> , 15, 10411-10433                  | 6.8   | 168 |
| 37 | In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC<sup>4</sup>RS: observations of a modest aerosol enhancement aloft. <i>Atmospheric Chemistry and Physics</i> , <b>2015</b> , 15, 7085-7102  | 6.8   | 46  |
| 36 | The primary and recycling sources of OH during the NACHTT-2011 campaign: HONO as an important OH primary source in the wintertime. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2014</b> , 119, 6886-6896                                                  | 4.4   | 53  |
| 35 | Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing. <i>Geophysical Research Letters</i> , <b>2014</b> , 41, 7701-7709                                                                               | 4.9   | 66  |
| 34 | New insights into atmospheric sources and sinks of isocyanic acid, HNCO, from recent urban and regional observations. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2014</b> , 119, 1060-1072                                                               | 4.4   | 31  |
| 33 | N2O5 uptake coefficients and nocturnal NO2 removal rates determined from ambient wintertime measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2013</b> , 118, 9331-9350                                                                           | 4.4   | 72  |
| 32 | Understanding the role of the ground surface in HONO vertical structure: High resolution vertical profiles during NACHTT-11. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2013</b> , 118, 10,155-10,171                                                    | 4.4   | 91  |
| 31 | WRF-Chem simulation of NOx and O3 in the L.A. basin during CalNex-2010. <i>Atmospheric Environment</i> , <b>2013</b> , 81, 421-432                                                                                                                                       | 5.3   | 27  |
| 30 | Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2013</b> , 118, 8067-8085             | 4.4   | 57  |
| 29 | Chlorine activation within urban or power plant plumes: Vertically resolved ClNO2 and Cl2 measurements from a tall tower in a polluted continental setting. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2013</b> , 118, 8702-8715                         | 4.4   | 81  |
| 28 | Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate: Results from the CalNex 2010 field study. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2013</b> , 118, 10,567-10,588 | 4.4   | 27  |

| 27 | Vertically resolved chemical characteristics and sources of submicron aerosols measured on a Tall Tower in a suburban area near Denver, Colorado in winter. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2013</b> , 118, 13,591-13,605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.4  | 15  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 26 | Heterogeneous Atmospheric Chemistry of Nitrogen Oxides: New Insights from Recent Field Measurements. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , <b>2013</b> , 125-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3  |     |
| 25 | Nitryl chloride and molecular chlorine in the coastal marine boundary layer. <i>Environmental Science &amp; Environmental Science</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3 | 152 |
| 24 | Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. <i>Geophysical Research Letters</i> , <b>2012</b> , 39, n/a-n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.9  | 163 |
| 23 | Airborne and ground-based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. <i>Journal of Geophysical Research</i> , <b>2012</b> , 117, n/a-n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 84  |
| 22 | Observations of ozone transport from the free troposphere to the Los Angeles basin. <i>Journal of Geophysical Research</i> , <b>2012</b> , 117, n/a-n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 33  |
| 21 | The sea breeze/land breeze circulation in Los Angeles and its influence on nitryl chloride production in this region. <i>Journal of Geophysical Research</i> , <b>2012</b> , 117, n/a-n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 40  |
| 20 | Measurement of atmospheric ozone by cavity ring-down spectroscopy. <i>Environmental Science</i> & amp; Technology, <b>2011</b> , 45, 2938-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.3 | 47  |
| 19 | City lights and urban air. <i>Nature Geoscience</i> , <b>2011</b> , 4, 730-731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.3 | 24  |
| 18 | Diode laser-based cavity ring-down instrument for NO <sub>3</sub> , N <sub>2</sub> O <sub>5</sub> , NO, NO <sub>2</sub> and O<sub>3</sub> from aircraft. <i>Atmospheric Measurement Techniques</i> , <b>2011</b> , 4, 1227-1240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4    | 98  |
| 17 | A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. <i>Nature</i> , <b>2010</b> , 464, 271-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.4 | 471 |
| 16 | Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. <i>Physical Review Letters</i> , <b>2009</b> , 102, 073902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.4  | 165 |
| 15 | Enhanced high harmonic generation from multiply ionized argon above 500 eV through laser pulse self-compression. <i>Physical Review Letters</i> , <b>2009</b> , 103, 143901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.4  | 33  |
| 14 | A sensitive and versatile detector for atmospheric NO2 and NOx based on blue diode laser cavity ring-down spectroscopy. <i>Environmental Science &amp; Environmental Science &amp; Envir</i> | 10.3 | 101 |
| 13 | Molecular recollision interferometry in high harmonic generation. <i>Physical Review Letters</i> , <b>2008</b> , 100, 073902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.4  | 130 |
| 12 | Extracting the phase of high-order harmonic emission from a molecule using transient alignment in mixed samples. <i>Physical Review A</i> , <b>2007</b> , 76,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.6  | 50  |
| 11 | Monitoring molecular dynamics using coherent electrons from high harmonic generation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2006</b> , 103, 13279-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.5 | 144 |
| 10 | Phase matching, quasi-phase matching, and pulse compression in a single waveguide for enhanced high-harmonic generation. <i>Optics Letters</i> , <b>2005</b> , 30, 1971-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3    | 15  |

## LIST OF PUBLICATIONS

| 9 | High-order harmonic generation up to 250 eV from highly ionized argon. <i>Physical Review Letters</i> , <b>2004</b> , 92, 033001                                                                  | 7.4   | 97  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|
| 8 | Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping. <i>Physical Review Letters</i> , <b>2004</b> , 93, 173902                                              | 7.4   | 85  |  |
| 7 | Coherent soft x-ray generation in the water window with quasi-phase matching. <i>Science</i> , <b>2003</b> , 302, 95-                                                                             | 833.3 | 286 |  |
| 6 | Phase-matching conditions for nonlinear frequency conversion by use of aligned molecular gases. <i>Optics Letters</i> , <b>2003</b> , 28, 346-8                                                   | 3     | 26  |  |
| 5 | Phase modulation of ultrashort light pulses using molecular rotational wave packets. <i>Physical Review Letters</i> , <b>2002</b> , 88, 013903                                                    | 7.4   | 195 |  |
| 4 | Aerosol optical properties in the southeastern United States in summer IPart 1: Hygroscopic growth                                                                                                |       | 5   |  |
| 3 | In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC <sup>4</sup> RS: observations of a modest aerosol enhancement aloft |       | 1   |  |
| 2 | Aerosol optical properties in the southeastern United States in summer IPart 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters                                  |       | 6   |  |
| 1 | Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013                                                                      |       | 6   |  |