Holger A Scheidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2363716/publications.pdf

Version: 2024-02-01

279798 254184 1,970 62 23 43 citations h-index g-index papers 65 65 65 2330 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interaction of POPG membranes with ionic liquids containing 1-Dodecyl-3-methylbenzimidazolium and 1-Dodecyl-1-methylmorpholinium Cations: Structural details from 31P and 2H-based solid-state NMR spectroscopy. Journal of Magnetic Resonance Open, 2022, 10-11, 100036.	1.1	5
2	Impact of Lipid Ratio on the Permeability of Mixed Phosphatidylcholine/Phosphatidylglycerol Membranes in the Presence of 1-Dodecyl-3-methylimidazolium Bromide Ionic Liquid. Journal of Physical Chemistry B, 2022, 126, 174-183.	2.6	6
3	Drug–Membrane Interactions: Effects of Virus-Specific RNA-Dependent RNA Polymerase Inhibitors Remdesivir and Favipiravir on the Structure of Lipid Bilayers. Biochemistry, 2022, 61, 1392-1403.	2.5	5
4	Role of cationic head-group in cytotoxicity of ionic liquids: Probing changes in bilayer architecture using solid-state NMR spectroscopy. Journal of Colloid and Interface Science, 2021, 581, 954-963.	9.4	19
5	Altered Membrane Mechanics Provides a Receptorâ€Independent Pathway for Serotonin Action. Chemistry - A European Journal, 2021, 27, 7533-7541.	3.3	20
6	Impact of Selected Small-Molecule Kinase Inhibitors on Lipid Membranes. Pharmaceuticals, 2021, 14, 746.	3.8	6
7	Membrane-water partitioning – Tackling the challenges of poorly soluble drugs using chaotropic co-solvents. Biophysical Chemistry, 2021, 277, 106654.	2.8	5
8	Interaction of the pitavastatin with model membranes. Biochemistry and Biophysics Reports, 2021, 28, 101143.	1.3	1
9	Probing the Influence of Single-Site Mutations in the Central Cross-β Region of Amyloid β (1–40) Peptides. Biomolecules, 2021, 11, 1848.	4.0	3
10	Structural details on the interaction of biologically active sulfur-containing monoterpenoids with lipid membranes. Journal of Molecular Liquids, 2020, 301, 112366.	4.9	15
11	Structural characteristics of oligomers formed by pyroglutamate-modified amyloid \hat{l}^2 peptides studied by solid-state NMR. Physical Chemistry Chemical Physics, 2020, 22, 16887-16895.	2.8	11
12	Light-induced lipid mixing implies a causal role of lipid splay in membrane fusion. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183438.	2.6	13
13	Interaction of the small-molecule kinase inhibitors tofacitinib and lapatinib with membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183414.	2.6	8
14	Binding of the small-molecule kinase inhibitor ruxolitinib to membranes does not disturb membrane integrity. Biochemistry and Biophysics Reports, 2020, 24, 100838.	1.3	3
15	Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. Journal of the American Chemical Society, 2020, 142, 12715-12729.	13.7	29
16	Integration of Cell-Free Expression and Solid-State NMR to Investigate the Dynamic Properties of Different Sites of the Growth Hormone Secretagogue Receptor. Frontiers in Pharmacology, 2020, 11, 562113.	3.5	10
17	Membrane Interaction of Ibuprofen with Cholesterol-Containing Lipid Membranes. Biomolecules, 2020, 10, 1384.	4.0	16
18	Effect of the Alkyl Chain Length of Amphiphilic Ionic Liquids on the Structure and Dynamics of Model Lipid Membranes. Langmuir, 2019, 35, 12215-12223.	3.5	37

#	Article	IF	CITATIONS
19	Membrane Localization and Lipid Interactions of Common Lipid-Conjugated Fluorescence Probes. Langmuir, 2019, 35, 11902-11911.	3.5	10
20	Shiga toxin binding alters lipid packing and the domain structure of Gb ₃ -containing membranes: a solid-state NMR study. Physical Chemistry Chemical Physics, 2019, 21, 15630-15638.	2.8	18
21	Interaction of statins with phospholipid bilayers studied by solid-state NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 584-593.	2.6	34
22	Bexarotene Binds to the Amyloid Precursor Protein Transmembrane Domain, Alters Its α-Helical Conformation, and Inhibits γ-Secretase Nonselectively in Liposomes. ACS Chemical Neuroscience, 2018, 9, 1702-1713.	3.5	11
23	Transmembrane Helix Induces Membrane Fusion through Lipid Binding and Splay. Journal of Physical Chemistry Letters, 2018, 9, 3181-3186.	4.6	11
24	Amphiphilic Ionic Liquid-Induced Membrane Permeabilization: Binding Is Not Enough. Journal of Physical Chemistry B, 2018, 122, 6763-6770.	2.6	25
25	Expression, Functional Characterization, and Solid-State NMR Investigation of the G Protein-Coupled GHS Receptor in Bilayer Membranes. Scientific Reports, 2017, 7, 46128.	3.3	20
26	N-terminal lipid conjugation of amyloid β(1–40) leads to the formation of highly ordered N-terminally extended fibrils. Physical Chemistry Chemical Physics, 2017, 19, 1839-1846.	2.8	14
27	Pyroglutamateâ€Modified Amyloid β (11―40) Fibrils Are More Toxic than Wildtype Fibrils but Structurally Very Similar. Chemistry - A European Journal, 2017, 23, 15834-15838.	3.3	17
28	The Potential of \hat{l}_{\pm} -Spinasterol to Mimic the Membrane Properties of Natural Cholesterol. Molecules, 2017, 22, 1390.	3.8	5
29	Membrane properties of hydroxycholesterols related to the brain cholesterol metabolism. Beilstein Journal of Organic Chemistry, 2017, 13, 720-727.	2.2	2
30	Improved in Vitro Folding of the Y2 G Protein-Coupled Receptor into Bicelles. Frontiers in Molecular Biosciences, 2017, 4, 100.	3.5	22
31	Acellularization-Induced Changes in Tensile Properties Are Organ Specific - An In-Vitro Mechanical and Structural Analysis of Porcine Soft Tissues. PLoS ONE, 2016, 11, e0151223.	2.5	32
32	The interaction of sorafenib and regorafenib with membranes is modulated by their lipid composition. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2871-2881.	2.6	19
33	Fibrils of Truncated Pyroglutamyl-Modified AÎ ² Peptide Exhibit a Similar Structure as Wildtype Mature AÎ ² Fibrils. Scientific Reports, 2016, 6, 33531.	3.3	15
34	A Detailed Analysis of the Morphology of Fibrils of Selectively Mutated Amyloid \hat{l}^2 (1 \hat{a}e" 40). ChemPhysChem, 2016, 17, 2744-2753.	2.1	15
35	The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition. Molecular and Cellular Endocrinology, 2016, 428, 68-81.	3.2	25
36	A preliminary technical study on sodium dodecyl sulfate-induced changes of the nano-structural and macro-mechanical properties in human iliotibial tract specimens. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 164-173.	3.1	14

#	Article	IF	Citations
37	Micro- and nano-tubules built from loosely and tightly rolled up thin sheets. Physical Chemistry Chemical Physics, 2016, 18, 1292-1301.	2.8	1
38	Structure and dynamics of the aliphatic cholesterol side chain in membranes as studied by ² H NMR spectroscopy and molecular dynamics simulation. Physical Chemistry Chemical Physics, 2016, 18, 3730-3738.	2.8	21
39	Integrating Solid-State NMR and Computational Modeling to Investigate the Structure and Dynamics of Membrane-Associated Ghrelin. PLoS ONE, 2015, 10, e0122444.	2.5	14
40	Local interactions influence the fibrillation kinetics, structure and dynamics of Aβ(1–40) but leave the general fibril structure unchanged. Physical Chemistry Chemical Physics, 2014, 16, 7461-7471.	2.8	47
41	Membrane properties of cholesterol analogs with an unbranched aliphatic side chain. Chemistry and Physics of Lipids, 2014, 184, 1-6.	3.2	15
42	The Orientation and Dynamics of Estradiol and Estradiol Oleate in Lipid Membranes and HDL Disc Models. Biophysical Journal, 2014, 107, 114-125.	0.5	13
43	Cholesterol's Aliphatic Side Chain Modulates Membrane Properties. Angewandte Chemie - International Edition, 2013, 52, 12848-12851.	13.8	54
44	Organization of fluorescent cholesterol analogs in lipid bilayers â€" Lessons from cyclodextrin extraction. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1822-1828.	2.6	36
45	Dynamics of Amyloid \hat{l}^2 Fibrils Revealed by Solid-state NMR. Journal of Biological Chemistry, 2012, 287, 2017-2021.	3.4	76
46	Interaction of local anesthetics with lipid bilayers investigated by 1H MAS NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3010-3018.	2.6	40
47	The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter, 2012, 8, 6599.	2.7	40
48	Solid-state NMR Reveals a Close Structural Relationship between Amyloid-Î ² Protofibrils and Oligomers. Journal of Biological Chemistry, 2012, 287, 22822-22826.	3.4	68
49	The interaction of lipid modified pseudopeptides with lipid membranes. Organic and Biomolecular Chemistry, 2011, 9, 6998.	2.8	12
50	Solidâ€State NMR Spectroscopic Investigation of Aβ Protofibrils: Implication of a βâ€Sheet Remodeling upon Maturation into Terminal Amyloid Fibrils. Angewandte Chemie - International Edition, 2011, 50, 2837-2840.	13.8	117
51	Investigating the membrane orientation and transversal distribution of $17\hat{l}^2$ -estradiol in lipid membranes by solid-state NMR. Chemistry and Physics of Lipids, 2010, 163, 356-361.	3.2	19
52	The mobility of chondroitin sulfate in articular and artificial cartilage characterized by ¹³ C magicâ€angle spinning NMR spectroscopy. Biopolymers, 2010, 93, 520-532.	2.4	15
53	Structure and Dynamics of the Myristoyl Lipid Modification of Src Peptides Determined by 2H Solid-State NMR Spectroscopy. Biophysical Journal, 2009, 96, 3663-3672.	0.5	27
54	The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning. Acta Pharmacologica Sinica, 2008, 29, 35-49.	6.1	96

#	Article	IF	CITATION
55	Structural and Dynamical Characterization of Fibrils from a Disease-Associated Alanine Expansion Domain Using Proteolysis and Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 7172-7173.	13.7	48
56	Solid-state NMR characterization of the putative membrane anchor of TWD1 from Arabidopsis thaliana. European Biophysics Journal, 2007, 36, 393-404.	2.2	18
57	Membrane interaction of neuropeptide Y detected by EPR and NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1714, 103-113.	2.6	24
58	Desmosterol May Replace Cholesterol in Lipid Membranes. Biophysical Journal, 2005, 88, 1838-1844.	0.5	68
59	Diffusion of Cholesterol and Its Precursors in Lipid Membranes Studied by 1H Pulsed Field Gradient Magic Angle Spinning NMR. Biophysical Journal, 2005, 89, 2504-2512.	0.5	150
60	Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1663, 97-107.	2.6	169
61	The Distribution of Lipid Attached Spin Probes in Bilayers: Application to Membrane Protein Topology. Biophysical Journal, 2003, 85, 1691-1701.	0.5	74
62	The Potential of Fluorescent and Spin-labeled Steroid Analogs to Mimic Natural Cholesterol. Journal of Biological Chemistry, 2003, 278, 45563-45569.	3.4	171