
Jingpei Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2363219/publications.pdf Version: 2024-02-01

LINCDEL XIE

#	Article	IF	CITATIONS
1	Effects of annealing temperature on the interfacial microstructure and bonding strength of Cu/Al clad sheets produced by twin-roll casting and rolling. Journal of Materials Processing Technology, 2020, 285, 116804.	6.3	32
2	Dynamic recrystallization model of 30%SiCp/Al composite. Journal of Alloys and Compounds, 2015, 649, 865-871.	5.5	26
3	Tensile properties and strengthening mechanisms of SiCp-reinforced aluminum matrix composites as a function of relative particle size ratio. Journal of Materials Research, 2013, 28, 2047-2055.	2.6	16
4	First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces. Surface Science, 2018, 670, 1-7.	1.9	16
5	Effects of vacancies at Al(1â€ ⁻ 1â€ ⁻ 1)/6H-SiC(0001) interfaces on deformation behavior: A first-principle study. Computational Materials Science, 2019, 158, 110-116.	3.0	16
6	Interfacial Characterization and Bonding Properties of Copper/Aluminum Clad Sheets Processed by Horizontal Twin-Roll Casting, Multi-Pass Rolling, and Annealing. Metals, 2018, 8, 645.	2.3	13
7	Effects of Heating Mode and Temperature on the Microstructures, Electrical and Optical Properties of Molybdenum Thin Films. Materials, 2018, 11, 1634.	2.9	13
8	Effect of Graphene Oxide Concentration in Electrolyte on Corrosion Behavior of Electrodeposited Zn–Electrochemical Reduction Graphene Composite Coatings. Coatings, 2019, 9, 758.	2.6	13
9	Study on Interface Structure of Cu/Al Clad Plates by Roll Casting. Metals, 2018, 8, 770.	2.3	11
10	Thermal expansion and mechanical properties of middle reinforcement content SiCp/Al composites fabricated by PM technology. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 660-664.	1.0	10
11	Effect of heat treatment on microstructure and mechanical properties of SiCp/2024 aluminum matrix composite. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 1229-1233.	1.0	10
12	Hot Deformation Behavior and Strain-Compensated Constitutive Equation of Nano-Sized SiC Particle-Reinforced Al-Si Matrix Composites. Materials, 2020, 13, 1812.	2.9	10
13	Contact resistance and arc erosion of tungsten-copper contacts in direct currents. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 816-822.	1.0	8
14	Calculating Study on Properties of Al (111)/6H-SiC (0001) Interfaces. Metals, 2020, 10, 1197.	2.3	8
15	Vacancy-mediated effects for simultaneously enhancing the Cu/graphene/Al interfacial bonding strength and thermal conductance: a first-principles study. Journal of Materials Science, 2021, 56, 5697-5707.	3.7	8
16	Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study. Materials, 2021, 14, 630.	2.9	8
17	Interfacial microstructure and bonding strength of copper/aluminum clad sheets produced by horizontal twin-roll casting and annealing. Materials Research Express, 2019, 6, 016505.	1.6	7
18	Molecular dynamics study of deformation mechanism of interfacial microzone of Cu/Al ₂ Cu/Al composites under tension. Nanotechnology Reviews, 2022, 11, 1158-1166.	5.8	6

JINGPEI XIE

#	Article	IF	CITATIONS
19	First-principle calculations on the structure of 6H-SiC/Al interface. Materials Research Express, 2019, 6, 065015.	1.6	5
20	Effect of Deformation Temperature, Strain Rate and Strain on the Strain Hardening Exponent of Copper/Aluminum Laminated Composites. Advanced Composites Letters, 2018, 27, 096369351802700.	1.3	4
21	Effects of thickness ratios and sputtering mode on the structural, electrical and optical properties of bilayer molybdenum thin films. AIP Advances, 2018, 8, 095028.	1.3	4
22	Effects of Bottom Layer Sputtering Pressures and Annealing Temperatures on the Microstructures, Electrical and Optical Properties of Mo Bilayer Films Deposited by RF/DC Magnetron Sputtering. Applied Sciences (Switzerland), 2019, 9, 1395.	2.5	4
23	Preparation, Properties and Microstructure of SiC Particle Reinforced Al–Si Matrix Composite. Materials Transactions, 2014, 55, 750-753.	1.2	3
24	Electronic and mechanical properties of Al (100)/6H–SiC (0001) interfaces: a first-principles study. Materials Research Express, 2019, 6, 126316.	1.6	3
25	Hot-Deformation Behavior and Microstructure Evolution of the Dual-Scale SiCp/A356 Composites Based on Optimal Hot-Processing Parameters. Materials, 2020, 13, 2825.	2.9	3
26	Effects of CeO2 Content on Friction and Wear Properties of SiCp/Al-Si Composite Prepared by Powder Metallurgy. Materials, 2020, 13, 4547.	2.9	3
27	Effect of consolidation parameters and heat treatment on microstructures and mechanical properties of SiCp/2024 Al composites. Science and Engineering of Composite Materials, 2015, 22, .	1.4	2
28	Effects of CeO2 on the Si Precipitation Mechanism of SiCp/Al-Si Composite Prepared by Powder Metallurgy. Materials, 2020, 13, 4365.	2.9	1
29	Second phase structure analysis and wear behavior of the ultra-high manganese steel. Materials Research Express, 2021, 8, 076504.	1.6	1
30	Effect of CeO2 Content on Microstructure and Properties of SiCp/Al-Si Composites Prepared by Powder Metallurgy. Materials, 2021, 14, 4685.	2.9	1
31	Design and Fabrication of a 5Ti5Zr5Nb1Sn Highâ€Entropy Alloy as Metallic Biomedical Material. Advanced Engineering Materials, 2022, 24, .	3.5	1
32	Effects of Aging Temperature on the Mechanical Properties and Precipitation Behavior of a Pre-strained Al–Cu–Mg–Ag Alloy. Metals and Materials International, 2023, 29, 293-302.	3.4	1
33	The computer solidification simulation of the end cover of large ball mill. , 2006, , .		0
34	Effect of cooling rate on the microstructure of ZA48 alloy. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 811-813.	1.0	0
35	Nanofriction oscillation driven by sublayer indirect contact of silicon tip sliding on few-layer graphene. AIP Advances, 2019, 9, 055023.	1.3	0