
## Jan Riemer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2363216/publications.pdf Version: 2024-02-01



IAN RIEMED

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mitochondria shed their outer membrane in response to infection-induced stress. Science, 2022, 375, eabi4343.                                                                                     | 12.6 | 42        |
| 2  | Spatial and temporal control of mitochondrial H <sub>2</sub> O <sub>2</sub> release in intact human cells. EMBO Journal, 2022, 41, e109169.                                                       | 7.8  | 39        |
| 3  | Calcium and redox signals at mitochondrial interfaces: A nanoview perspective. Cell Calcium, 2022, 103, 102550.                                                                                   | 2.4  | 0         |
| 4  | Protein Import Assay into Mitochondria Isolated from Human Cells. Bio-protocol, 2021, 11, e4057.                                                                                                  | 0.4  | 5         |
| 5  | Erv1 and Cytochrome c Mediate Rapid Electron Transfer via A Collision-Type Interaction. Journal of<br>Molecular Biology, 2021, 433, 167045.                                                       | 4.2  | 5         |
| 6  | Apoptosis inducing factor and mitochondrial NADH dehydrogenases: redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death. Biological Chemistry, 2021, 402, 289-297. | 2.5  | 30        |
| 7  | The C-terminal region of the oxidoreductase MIA40 stabilizes its cytosolic precursor during mitochondrial import. BMC Biology, 2020, 18, 96.                                                      | 3.8  | 14        |
| 8  | When bacteria meet mitochondria: The strange case of the tick symbiont <i>Midichloria<br/>mitochondrii</i> <sup>â€</sup> . Cellular Microbiology, 2020, 22, e13189.                               | 2.1  | 18        |
| 9  | Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biological Chemistry, 2020, 401, 749-763.                                                                               | 2.5  | 16        |
| 10 | A salvage pathway maintains highly functional respiratory complex I. Nature Communications, 2020, 11, 1643.                                                                                       | 12.8 | 80        |
| 11 | Proteasomal degradation induced by DPP9â€mediated processing competes with mitochondrial protein import. EMBO Journal, 2020, 39, e103889.                                                         | 7.8  | 24        |
| 12 | Cysteine residues in mitochondrial intermembrane space proteins: more than just import. British<br>Journal of Pharmacology, 2019, 176, 514-531.                                                   | 5.4  | 36        |
| 13 | Stop wasting protein—Proteasome inhibition to target diseases linked to mitochondrial import. EMBO<br>Molecular Medicine, 2019, 11, .                                                             | 6.9  | 6         |
| 14 | Hyperoxidation of mitochondrial peroxiredoxin limits H <sub>2</sub> O <sub>2</sub> â€induced cell<br>death in yeast. EMBO Journal, 2019, 38, e101552.                                             | 7.8  | 50        |
| 15 | Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature, 2019, 575, 361-365.                                                                                                | 27.8 | 116       |
| 16 | Vectorial Import via a Metastable Disulfide-Linked Complex Allows for a Quality Control Step and<br>Import by the Mitochondrial Disulfide Relay. Cell Reports, 2019, 26, 759-774.e5.              | 6.4  | 33        |
| 17 | Oxidative protein folding: stateâ€ofâ€theâ€art and current avenues of research in plants. New Phytologist,<br>2019, 221, 1230-1246.                                                               | 7.3  | 29        |
| 18 | Plasticity in salt bridge allows fusion-competent ubiquitylation of mitofusins and Cdc48 recognition.<br>Life Science Alliance, 2019, 2, e201900491.                                              | 2.8  | 10        |

Jan Riemer

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide<br>Probes. Antioxidants and Redox Signaling, 2018, 29, 552-568.                                                                        | 5.4  | 33        |
| 20 | The mitochondrial oxidoreductase CHCHD4 is present in a semi-oxidized state in vivo. Redox Biology, 2018, 17, 200-206.                                                                                                                  | 9.0  | 18        |
| 21 | Mutations in the accessory subunit <i>NDUFB10</i> result in isolated complex I deficiency and illustrate the critical role of intermembrane space import for complex I holoenzyme assembly. Human Molecular Genetics, 2017, 26, ddw431. | 2.9  | 64        |
| 22 | Detection of Cysteine Redox States in Mitochondrial Proteins in Intact Mammalian Cells. Methods in<br>Molecular Biology, 2017, 1567, 105-138.                                                                                           | 0.9  | 2         |
| 23 | Mitochondrial Glutathione: Regulation and Functions. Antioxidants and Redox Signaling, 2017, 27, 1162-1177.                                                                                                                             | 5.4  | 120       |
| 24 | Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding. Cell, 2017, 170, 298-311.e20.                                                                                                                    | 28.9 | 154       |
| 25 | Mitochondrial disulfide relay and its substrates: mechanisms in health and disease. Cell and Tissue<br>Research, 2017, 367, 59-72.                                                                                                      | 2.9  | 23        |
| 26 | Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radical Biology and<br>Medicine, 2016, 94, 157-160.                                                                                                     | 2.9  | 48        |
| 27 | The Ca2+-Dependent Release of the Mia40-Induced MICU1-MICU2 Dimer from MCU Regulates<br>Mitochondrial Ca2+ Uptake. Cell Metabolism, 2015, 22, 721-733.                                                                                  | 16.2 | 154       |
| 28 | Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Molecular Biology of the Cell, 2015, 26, 195-204.                                                           | 2.1  | 59        |
| 29 | The Disulfide Relay of the Intermembrane Space Oxidizes the Ribosomal Subunit Mrp10 on Its Transit into the Mitochondrial Matrix. Developmental Cell, 2014, 28, 30-42.                                                                  | 7.0  | 58        |
| 30 | Balancing oxidative protein folding: The influences of reducing pathways on disulfide bond<br>formation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1383-1390.                                                | 2.3  | 58        |
| 31 | Mechanisms and physiological impact of the dual localization of mitochondrial intermembrane space proteins. Biochemical Society Transactions, 2014, 42, 952-958.                                                                        | 3.4  | 8         |
| 32 | Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general. Microbial Cell, 2014, 1, 81-93.                                                                                                 | 3.2  | 17        |
| 33 | Axonal Transport and Mitochondrial Dysfunction in Alzheimer's Disease. Neurodegenerative Diseases, 2013, 12, 111-124.                                                                                                                   | 1.4  | 32        |
| 34 | Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells. Molecular Biology of the Cell, 2013, 24, 2160-2170.                                                                            | 2.1  | 105       |
| 35 | The Mitochondrial Disulfide Relay System: Roles in Oxidative Protein Folding and Beyond.<br>International Journal of Cell Biology, 2013, 2013, 1-12.                                                                                    | 2.5  | 79        |
| 36 | Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO Journal, 2012, 31, 3169-3182.                                                                     | 7.8  | 154       |

Jan Riemer

| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria. EMBO<br>Journal, 2012, 31, 4348-4358.                                          | 7.8  | 80        |
| 38 | Oxidation-driven protein import into mitochondria: Insights and blind spots. Biochimica Et Biophysica<br>Acta - Biomembranes, 2011, 1808, 981-989.                             | 2.6  | 50        |
| 39 | Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol. Molecular Biology of the Cell, 2011, 22, 3749-3757. | 2.1  | 54        |
| 40 | Mitochondrial Disulfide Bond Formation Is Driven by Intersubunit Electron Transfer in Erv1 and Proofread by Glutathione. Molecular Cell, 2010, 37, 516-528.                    | 9.7  | 158       |
| 41 | The Intermembrane Space of Mitochondria. Antioxidants and Redox Signaling, 2010, 13, 1341-1358.                                                                                | 5.4  | 117       |
| 42 | Systematic Analysis of the Twin Cx9C Protein Family. Journal of Molecular Biology, 2009, 393, 356-368.                                                                         | 4.2  | 153       |
| 43 | Disulfide Formation in the ER and Mitochondria: Two Solutions to a Common Process. Science, 2009, 324, 1284-1287.                                                              | 12.6 | 227       |