Meghan Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/236287/publications.pdf

Version: 2024-02-01

85 papers 3,381 citations

32 h-index 55 g-index

93 all docs 93 docs citations

93 times ranked 3424 citing authors

#	Article	IF	CITATIONS
1	A Detailed Earthquake Catalog for Banda Arc–Australian Plate Collision Zone Using Machine-Learning Phase Picker and an Automated Workflow. The Seismic Record, 2022, 2, 1-10.	3.1	21
2	<i>SASSY21</i> : A 3â€D Seismic Structural Model of the Lithosphere and Underlying Mantle Beneath Southeast Asia From Multiâ€Scale Adjoint Waveform Tomography. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	17
3	Tectonic Fabric in the Banda Arcâ€Australian Continent Collisional Zone Imaged by Teleseismic Receiver Functions. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	5
4	Mantle Flow Deflected by Arc–Continent Collision and Continental Subduction in Eastern Indonesia. Seismological Research Letters, 2022, 93, 1812-1834.	1.9	4
5	Rapid deployment for earthquake aftershock monitoring in southwest Western Australia – the Arthur River swarm 2022. Preview, 2022, 2022, 39-41.	0.1	O
6	Oligocene-Neogene lithospheric-scale reactivation of Mesozoic terrane accretionary structures in the Alaska Range suture zone, southern Alaska, USA. Bulletin of the Geological Society of America, 2021, 133, 691-716.	3.3	8
7	On the destructive tendencies of cratons. Geology, 2021, 49, 195-200.	4.4	7
8	Seismic Imaging of the Subducted Australian Continental Margin Beneath Timor and the Banda Arc Collision Zone. Geophysical Research Letters, 2021, 48, e2020GL089632.	4.0	11
9	Small-scale heterogeneity in the lowermost mantle beneath Alaska and northern Pacific revealed from shear-wave triplications. Earth and Planetary Science Letters, 2021, 559, 116768.	4.4	4
10	Seismic Evidence for Thermal and Chemical Heterogeneities in D″ Region Beneath Central America From Grid Search Modeling. Geophysical Research Letters, 2021, 48, e2021GL092493.	4.0	2
11	Inflation and Asymmetric Collapse at Kīlauea Summit During the 2018 Eruption From Seismic and Infrasound Analyses. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022139.	3.4	7
12	Tectonic Inheritance During Plate Boundary Evolution in Southern California Constrained From Seismic Anisotropy. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC010099.	2.5	3
13	Introduction to the Focus Section on EarthScope Alaska and Canada. Seismological Research Letters, 2020, 91, 3015-3016.	1.9	1
14	Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 2020, 369, 1338-1343.	12.6	202
15	A comparison of oceanic and continental mantle lithosphere. Physics of the Earth and Planetary Interiors, 2020, 309, 106600.	1.9	20
16	Subducted Lithospheric Boundary Tomographically Imaged Beneath Arc ontinent Collision in Eastern Indonesia. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018854.	3.4	13
17	Mapping Earth's deepest secrets. Science, 2020, 368, 1183-1184.	12.6	4
18	Fate of Forearc Lithosphere at Arcâ€Continent Collision Zones: Evidence From Local Earthquake Tomography of the Sundaâ€Banda Arc Transition, Indonesia. Geophysical Research Letters, 2020, 47, e2019GL086472.	4.0	20

#	Article	IF	Citations
19	Seismic imaging the Dâ \in 3 region beneath the Central Atlantic. Physics of the Earth and Planetary Interiors, 2019, 292, 76-86.	1.9	4
20	Intermediateâ€Depth Earthquakes Controlled by Incoming Plate Hydration Along Bendingâ€Related Faults. Geophysical Research Letters, 2019, 46, 3688-3697.	4.0	30
21	Introduction to "Orogenic Cycles: From Field Observations to Global Geodynamics― Tectonics, 2019, 38, 3-6.	2.8	0
22	Updates to FuncLab, a Matlab based GUI for handling receiver functions. Computers and Geosciences, 2018, 111, 260-271.	4.2	26
23	Mapping the Alaskan Moho. Seismological Research Letters, 2018, 89, 2430-2436.	1.9	25
24	Multiscale crustal architecture of Alaska inferred from P receiver functions. Lithosphere, 2018, 10, 267-278.	1.4	43
25	Seismic Imaging of the Alaska Subduction Zone: Implications for Slab Geometry and Volcanism. Geochemistry, Geophysics, Geosystems, 2018, 19, 4541-4560.	2.5	52
26	Tomographic Imaging of Slab Segmentation and Deformation in the Greater Antilles. Geochemistry, Geophysics, Geosystems, 2018, 19, 2292-2307.	2.5	21
27	Irregular Transition Layer Beneath the Earth's Inner Core Boundary From Observations of Antipodal PKIKP and PKIIKP Waves. Geochemistry, Geophysics, Geosystems, 2018, 19, 3607-3622.	2.5	11
28	The structural evolution of the deep continental lithosphere. Tectonophysics, 2017, 695, 100-121.	2.2	25
29	Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes. Tectonics, 2017, 36, 3298-3332.	2.8	72
30	Establishing earthquake monitoring in Timor–Leste. , 2017, , .		0
31	Major disruption of D″ beneath Alaska. Journal of Geophysical Research: Solid Earth, 2016, 121, 3534-3556.	3.4	26
32	Banda Arc Experiment—Transitions in the Banda Arcâ€Australian Continental Collision. Seismological Research Letters, 2016, 87, 1417-1423.	1.9	14
33	Continent–arc collision in the Banda Arc imaged by ambient noise tomography. Earth and Planetary Science Letters, 2016, 449, 246-258.	4.4	33
34	The geophysical signatures of the West African Craton. Precambrian Research, 2016, 274, 3-24.	2.7	54
35	Lithospheric architecture beneath <scp>H</scp> udson <scp>B</scp> ay. Geochemistry, Geophysics, Geosystems, 2015, 16, 2262-2275.	2.5	31
36	Lithospheric discontinuity structure in Alaska, thickness variations determined by <i>Sp</i> receiver functions. Tectonics, 2015, 34, 694-714.	2.8	35

#	Article	IF	CITATIONS
37	Flatâ€slab subduction, topography, and mantle dynamics in southwestern Mexico. Tectonics, 2015, 34, 1892-1909.	2.8	25
38	Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China. Geoscience Frontiers, 2015, 6, 49-59.	8.4	36
39	Collisional Processes and Links to Episodic Changes in Subduction Zones. Elements, 2015, 11, 119-124.	0.5	33
40	Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain. Earth and Planetary Science Letters, 2015, 431, 186-194.	4.4	42
41	Mantle flow at the highly arcuate northeast corner of the Lesser Antilles subduction zone: Constraints from shear-wave splitting analyses. Lithosphere, 2015, 7, 579-587.	1.4	11
42	Hot upwelling conduit beneath the Atlas Mountains, Morocco. Geophysical Research Letters, 2014, 41, 8037-8044.	4.0	15
43	Reactivated lithospheric-scale discontinuities localize dynamic uplift of the Moroccan Atlas Mountains: REPLY. Geology, 2014, 42, e338-e338.	4.4	0
44	Static and dynamic support of western United States topography. Earth and Planetary Science Letters, 2014, 402, 234-246.	4.4	61
45	High frequency seismic waves and slab structures beneath Italy. Earth and Planetary Science Letters, 2014, 391, 212-223.	4.4	23
46	Dynamics of continental accretion. Nature, 2014, 508, 245-248.	27.8	214
47	Reactivated lithospheric-scale discontinuities localize dynamic uplift of the Moroccan Atlas Mountains. Geology, 2014, 42, 35-38.	4.4	50
48	Subduction-driven recycling of continental margin lithosphere. Nature, 2014, 515, 253-256.	27.8	66
49	The fate of the downgoing oceanic plate: Insight from the Northern Cascadia subduction zone. Earth and Planetary Science Letters, 2014, 408, 237-251.	4.4	28
50	Moho structure across the San Jacinto fault zone: Insights into strain localization at depth. Lithosphere, 2014, 6, 43-47.	1.4	16
51	Craton formation: Internal structure inherited from closing of the early oceans. Lithosphere, 2014, 6, 35-42.	1.4	36
52	Isostasy, dynamic topography, and the elevation of the Apennines of Italy. Earth and Planetary Science Letters, 2014, 407, 163-174.	4.4	91
53	Insights on the upper mantle beneath the Eastern Alps. Earth and Planetary Science Letters, 2014, 403, 199-209.	4.4	27
54	Evidence of an upper mantle seismic anomaly opposing the <scp>C</scp> ocos slab beneath the <scp>I</scp> sthmus of <scp>T</scp> ehuantepec, <scp>M</scp> exico. Geochemistry, Geophysics, Geosystems, 2014, 15, 3021-3034.	2.5	3

#	Article	IF	CITATIONS
55	Constraints on the tectonic evolution of the westernmost Mediterranean and northwestern Africa from shear wave splitting analysis. Earth and Planetary Science Letters, 2013, 375, 234-243.	4.4	51
56	Aspherical structural heterogeneity within the uppermost inner core: Insights into the hemispherical boundaries and core formation. Physics of the Earth and Planetary Interiors, 2013, 223, 8-20.	1.9	15
57	Study of the western edge of the African Large Low Shear Velocity Province. Geochemistry, Geophysics, Geosystems, 2013, 14, 3109-3125.	2.5	23
58	Structure beneath the Alboran from geodynamic flow models and seismic anisotropy. Journal of Geophysical Research: Solid Earth, 2013, 118, 4265-4277.	3.4	31
59	Melting under the Colorado Plateau, USA. Geology, 2012, 40, 387-390.	4.4	36
60	Mantle flow deflected by interactions between subducted slabs and cratonic keels. Nature Geoscience, 2012, 5, 726-730.	12.9	51
61	Insights into the evolution of the Italian lithospheric structure from S receiver function analysis. Earth and Planetary Science Letters, 2012, 345-348, 49-59.	4.4	45
62	$\langle i \rangle V \langle i \rangle \langle sub \rangle \langle i \rangle S \langle i \rangle \langle sub \rangle$ and density structure beneath the Colorado Plateau constrained by gravity anomalies and joint inversions of receiver function and phase velocity data. Journal of Geophysical Research, 2012, 117, .	3.3	31
63	Coâ€seismic deformation of deep slabs based on summed CMT data. Journal of Geophysical Research, 2012, 117, .	3.3	9
64	Evolutionary aspects of lithosphere discontinuity structure in the western U.S Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	118
65	Seismic imaging of the Cocos plate subduction zone system in central Mexico. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	47
66	Imaging crustal and upper mantle structure beneath the Colorado Plateau using finite frequency Rayleigh wave tomography. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	30
67	Erosion of the continental lithosphere at the cusps of the Calabrian arc: Evidence from <i>S</i> receiver functions analysis. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	17
68	Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling. Nature, 2011, 472, 461-465.	27.8	258
69	Formation of cratonic mantle keels by arc accretion: Evidence from S receiver functions. Geophysical Research Letters, 2010, 37, .	4.0	74
70	Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones. Tectonophysics, 2010, 483, 71-79.	2.2	90
71	Upper mantle structure beneath the Caribbeanâ€South American plate boundary from surface wave tomography. Journal of Geophysical Research, 2009, 114, .	3.3	43
72	Breaking the slab. Nature Geoscience, 2008, 1, 730-731.	12.9	0

#	Article	IF	CITATIONS
73	Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics, 2008, 27, .	2.8	302
74	Identification and tectonic implications of a tear in the South American plate at the southern end of the Lesser Antilles. Geochemistry, Geophysics, Geosystems, 2008, 9 , .	2.5	38
75	Bulldozing the core–mantle boundary: Localized seismic scatterers beneath the Caribbean Sea. Physics of the Earth and Planetary Interiors, 2008, 170, 89-94.	1.9	19
76	Possible chemical modification of oceanic lithosphere by hotspot magmatism: Seismic evidence from the junction of Ninetyeast Ridge and the Sumatra–Andaman arc. Earth and Planetary Science Letters, 2008, 265, 386-395.	4.4	12
77	Three-dimensional visualization of a near-vertical slab tear beneath the southern Mariana arc. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	61
78	Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	88
79	Evolution of mantle structure beneath the northwest Pacific: Evidence from seismic tomography and paleogeographic reconstructions. Tectonics, 2006, 25, n/a-n/a.	2.8	25
80	Morphology of the distorted subducted Pacific slab beneath the Hokkaido corner, Japan. Physics of the Earth and Planetary Interiors, 2006, 156, 1-11.	1.9	35
81	Heterogeneity within the subducting Pacific slab beneath the Izu–Bonin–Mariana arc: Evidence from tomography using 3D ray tracing inversion techniques. Earth and Planetary Science Letters, 2005, 235, 331-342.	4.4	66
82	Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu–Bonin–Mariana arc. Earth and Planetary Science Letters, 2004, 224, 363-370.	4.4	61
83	Chapter 7 Seismic interpretation and processing applications. Handbook of Geophysical Exploration: Seismic Exploration, 2001, , 101-118.	0.3	2
84	New kinematic models for Pacific-North America Motion from 3 Ma to Present, II: Evidence for a "Baja California Shear Zone― Geophysical Research Letters, 2000, 27, 3961-3964.	4.0	70
85	Active Seismicity in the Flinders Ranges. Journal of the Virtual Explorer, 0, 20, .	0.0	0