
Sung-Ryong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2362647/publications.pdf Version: 2024-02-01

SUNC-PYONG KIM

#	Article	IF	CITATIONS
1	Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications. Chemical Engineering Journal, 2022, 429, 132182.	6.6	25
2	Scalable graphene fluoride sandwiched aramid nanofiber paper with superior high-temperature capacitive energy storage. Chemical Engineering Journal, 2022, 444, 136504.	6.6	7
3	<scp>3D</scp> printing of copper particles and poly(methyl methacrylate) beads containing poly(lactic acid) composites for enhancing thermomechanical properties. Journal of Applied Polymer Science, 2021, 138, 49776.	1.3	19
4	Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. Journal of Materials Chemistry A, 2021, 9, 8527-8540.	5.2	53
5	3D structured graphene fluoride-based epoxy composites with high thermal conductivity and electrical insulation. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106585.	3.8	34
6	Hybrid shell of MXene and reduced graphene oxide assembled on PMMA bead core towards tunable thermoconductive and EMI shielding nanocomposites. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106574.	3.8	56
7	Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation. Carbon, 2020, 157, 741-749.	5.4	69
8	Highly Flexible Graphene Derivative Hybrid Film: An Outstanding Nonflammable Thermally Conductive yet Electrically Insulating Material for Efficient Thermal Management. ACS Applied Materials & Interfaces, 2020, 12, 26413-26423.	4.0	38
9	Effect of aspect ratio of vertically aligned copper nanowires in the presence of cellulose nanofibers on the thermal conductivity of epoxy composites. Polymers for Advanced Technologies, 2020, 31, 2351-2359.	1.6	13
10	Ultralight covalently interconnected silicon carbide aerofoam for high performance thermally conductive epoxy composites. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106028.	3.8	22
11	High Thermal Conductivity Enhancement of Polymer Composites with Vertically Aligned Silicon Carbide Sheet Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 23388-23398.	4.0	69
12	Enhancement of Thermal Conductivity of Poly(methylmethacrylate) Composites at Low Loading of Copper Nanowires. Macromolecular Research, 2019, 27, 1117-1123.	1.0	8
13	Copper flake-coated cellulose scaffold to construct segregated network for enhancing thermal conductivity of epoxy composites. Composites Part B: Engineering, 2019, 165, 772-778.	5.9	31
14	Electrical energy generated by silicone elastomers filled with nanospring-carbon-nanotubes. Journal of Materials Chemistry C, 2019, 7, 3535-3542.	2.7	13
15	Poly(methyl methacrylate)â€functionalized reduced graphene oxideâ€based core–shell structured beads for thermally conductive epoxy composites. Journal of Applied Polymer Science, 2019, 136, 47377.	1.3	14
16	Thermally conductive adhesives from covalent-bonding of reduced graphene oxide to acrylic copolymer. Journal of Adhesion, 2019, 95, 887-910.	1.8	12
17	Core-shell structured carbon nanotube-poly(methylmethacrylate) beads as thermo-conductive filler in epoxy composites. Composites Part A: Applied Science and Manufacturing, 2018, 109, 55-62.	3.8	20
18	Self-Assembly of Carbon Nanotubes and Boron Nitride via Electrostatic Interaction for Epoxy Composites of High Thermal Conductivity and Electrical Resistivity. Macromolecular Research, 2018, 26, 521-528.	1.0	36

SUNG-RYONG KIM

#	Article	IF	CITATIONS
19	Synergistic effects of segregated network by polymethylmethacrylate beads and sintering of copper nanoparticles on thermal and electrical properties of epoxy composites. Composites Science and Technology, 2018, 155, 144-150.	3.8	40
20	Effects of Carbon-based Nanofillers on the Structure and Property of Phenolic Foam. Porrime, 2018, 42, 133-139.	0.0	0
21	Transparent high-performance SiOxNy/SiOx barrier films for organic photovoltaic cells with high durability. Nano Energy, 2017, 33, 12-20.	8.2	8
22	Effects of Bending Stress on 6,13-Bis(triisopropylsilylethynyl) Pentacene (TIPS-PEN)-Based Organic Thin-Film Transistors. Science of Advanced Materials, 2017, 9, 2234-2239.	0.1	1
23	Acoustic Characteristics and Thermal Properties of Polycarbonate/(Graphite Intercalation) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf 5
24	Pressure-sensitive adhesive composites with a hydrophobic form of graphene oxide for enhanced thermal conductivity. Macromolecular Research, 2016, 24, 1070-1076.	1.0	12
25	Spin Selfâ€Assembled Clay Nanocomposite Passivation Layers Made from a Photocrosslinkable Poly(vinyl) Tj ETC Thinâ€Film Transistors. Chinese Journal of Chemistry, 2016, 34, 1103-1108.	Qq1 1 0.78 2.6	34314 rgBT /(4
26	Ultrasmooth transparent conductive hybrid films of reduced graphene oxide and single-walled carbon nanotube by ultrasonic spraying. Synthetic Metals, 2016, 221, 340-344.	2.1	12
27	Thermal Conductivity Improvement by Cu Surface Treatments and Incorporation of PMMA Beads on Cu/Epoxy Composites. Porrime, 2016, 40, 148.	0.0	2
28	Enhanced Thermal Conductivity of Pressure Sensitive Adhesives Using Hybrid Fillers of SiC Microparticle and SiC Nanoparticle Grafted Graphene Oxide. Porrime, 2016, 40, 804.	0.0	5
29	Properties of Stretchable Graphite Intercalation Compound/Polydimethylsiloxane Composites after Cyclic Tensile Strain of 20%. Porrime, 2016, 40, 336.	0.0	0
30	Hybrid Nanocomposites of Bridged Polysilsesquioxane Nanoparticles and Polystyrene by Radical Polymerization. Porrime, 2016, 40, 992.	0.0	0
31	Preparation and characterization of expanded graphite intercalation compound/UV-crosslinked acrylic resin pressure sensitive adhesives. Macromolecular Research, 2015, 23, 396-401.	1.0	10
32	Effect of Graphite Intercalation Compound on the Sound Absorption Coefficient and Sound Transmission Loss of Epoxy Composites. Composites Research, 2015, 28, 389-394.	0.1	1
33	Ultrasonic-sprayed Graphene Oxide and Air-sprayed Silver Nanowire for the Preparation of Flexible Transparent Conductive Films. Chemistry Letters, 2014, 43, 1242-1244.	0.7	10
34	Highly electrocatalytic hybrid silver nanowire-graphene counter electrode for Co3+/2+ redox mediator based dye-sensitized solar cells. Synthetic Metals, 2013, 177, 77-81.	2.1	8
35	Pt and TCO free hybrid bilayer silver nanowire–graphene counter electrode for dye-sensitized solar cells. Chemical Physics Letters, 2013, 561-562, 115-119.	1.2	28
36	Graphene–Gold Nanoparticle Composite Counter Electrode for Cobalt-electrolyte-based Dye-sensitized Solar Cells. Chemistry Letters, 2013, 42, 31-33.	0.7	5

SUNG-RYONG KIM

#	Article	IF	CITATIONS
37	Direct-Write Patterning of Bacterial Cells by Dip-Pen Nanolithography. Journal of the American Chemical Society, 2012, 134, 16500-16503.	6.6	38
38	Bundling dynamics regulates the active mechanics and transport in carbon nanotube networks and their nanocomposites. Nanoscale, 2012, 4, 3584.	2.8	19
39	Surface modification and retardation of back reaction by nitrogen ion-beam treatment in dye-sensitized solar cells. Chemical Physics Letters, 2012, 538, 77-81.	1.2	6
40	Submillimeter-scale Graphene Patterning through Ink-jet Printing of Graphene Oxide Ink. Chemistry Letters, 2011, 40, 54-55.	0.7	28
41	Synthesis of acetyl imidazolium-based electyrolytes and application for dye-sensitized solar cells. Electrochimica Acta, 2011, 57, 285-289.	2.6	7
42	Oxygen ion-beam irradiation of TiO ₂ films reduces oxygen vacancies and improves performance of dye-sensitized solar cells. Journal of Materials Research, 2011, 26, 1012-1017.	1.2	6
43	Comparative study of plasma and ion-beam treatment to reduce the oxygen vacancies in TiO2 and recombination reactions in dye-sensitized solar cells. Chemical Physics Letters, 2010, 495, 69-72.	1.2	20
44	Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition. Thin Solid Films, 2010, 518, 1929-1934.	0.8	8
45	UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chemical Physics Letters, 2009, 483, 124-127.	1.2	228
46	Measurement of Poisson's Ratio of a Thin Film on a Substrate by Combining X-Ray Diffraction with in situ Substrate Bending. Electronic Materials Letters, 2009, 5, 51-54.	1.0	10
47	Effect of silicone oil on the morphology and properties of polycarbonate. Journal of Applied Polymer Science, 2008, 109, 3439-3446.	1.3	9
48	New Hole Transporting Materials Based on Di- and Tetra-Substituted Biphenyl Derivatives for Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2008, 8, 5123-5129.	0.9	0
49	Study on Thermal Conductivity of Polyetheretherketone/Thermally Conductive Filler Composites. Solid State Phenomena, 2007, 124-126, 1079-1082.	0.3	8
50	Synthesis of Hybrid Polyacetylene Gels Using Octafunctional POSS Initiator. Macromolecular Symposia, 2007, 249-250, 562-567.	0.4	19
51	Comparative Study on the Failure of Polymer/Roughened Metal Interfaces under Mode-I Loading II: Adhesion Model. Korean Journal of Materials Research, 2005, 15, 6-13.	0.1	0
52	Nondestructive evaluation of interfacial damage properties for plasma-treated biodegradable poly(p-dioxanone) fiber/poly(l-lactide) composites by micromechanical test and surface wettability. Composites Science and Technology, 2004, 64, 847-860.	3.8	30
53	Failure Paths of Polymer/Roughened Metal Interfaces under Mixed-Mode Loading. Korean Journal of Materials Research, 2004, 14, 322-327.	0.1	0
54	Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability. Journal of Colloid and Interface Science, 2003, 264, 431-445.	5.0	158

SUNG-RYONG KIM

#	Article	IF	CITATIONS
55	Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibers/poly-l-lactide composites using micromechanical test and nondestructive acoustic emission. Composites Science and Technology, 2003, 63, 403-419.	3.8	35
56	Extensional and complex viscosities of linear and branched polycarbonate blends. Macromolecular Research, 2002, 10, 135-139.	1.0	14
57	Fracture mechanics analysis of coating/substrate systems. Engineering Fracture Mechanics, 2000, 65, 573-593.	2.0	96
58	Fracture mechanics analysis of coating/substrate systems. Engineering Fracture Mechanics, 2000, 65, 595-607.	2.0	58
59	Properties of Flame-Retarding Blends of Polycarbonate and Poly(Acrylonitrile-butadiene-Styrene). Journal of Polymer Engineering, 1998, 18, 115-130.	0.6	16
60	Surface modification of polytetrafluoroethylene by Ar+ irradiation for improved adhesion to other materials. Journal of Applied Polymer Science, 1997, 64, 1913-1921.	1.3	80
61	A fracture mechanics analysis of multiple cracking in coatings. Engineering Fracture Mechanics, 1992, 42, 195-208.	2.0	55