
Younes Miar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2362593/publications.pdf Version: 2024-02-01

YOUNES MIAD

#	Article	IF	CITATIONS
1	Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species. Genes, 2022, 13, 297.	2.4	5
2	Genetic and phenotypic parameters for body weights, harvest length, and growth curve parameters in American mink. Journal of Animal Science, 2021, 99, .	0.5	6
3	Population Genomics of American Mink Using Whole Genome Sequencing Data. Genes, 2021, 12, 258.	2.4	8
4	Detection of selection signatures for response to Aleutian mink disease virus infection in American mink. Scientific Reports, 2021, 11, 2944.	3.3	16
5	Genomic Prediction of Average Daily Gain, Back-Fat Thickness, and Loin Muscle Depth Using Different Genomic Tools in Canadian Swine Populations. Frontiers in Genetics, 2021, 12, 665344.	2.3	14
6	Genetic and phenotypic parameters for Aleutian disease tests and their correlations with pelt quality, reproductive performance, packed-cell volume, and harvest length in mink. Journal of Animal Science, 2021, 99, .	0.5	5
7	18 Genetic and Phenotypic Parameters for Aleutian Disease Tests and Their Correlations with Pelt Quality, Reproductive Performance, Packed-cell Volume, and Harvest Length in Mink. Journal of Animal Science, 2021, 99, 8-9.	0.5	3
8	PSVIII-9 Genome assembly of American mink (Neovison vison) using high-fidelity long reads. Journal of Animal Science, 2021, 99, 241-242.	0.5	0
9	149 Integration of Selection Signatures Analyses and Weighted Single-step GWAS to Prioritize Candidate Genes for Body Conformation Traits in Pigs. Journal of Animal Science, 2021, 99, 76-77.	0.5	Ο
10	148 Multiple Dysregulated Novel Pathways and Genes in Aleutian Mink Disease Revealed by Selection Signatures and Gene Network Analyses Using Whole-genome Sequence Data. Journal of Animal Science, 2021, 99, 76-76.	0.5	0
11	PSIX-15 Assessment of machine learning algorithms for prediction of Aleutian disease in American mink. Journal of Animal Science, 2021, 99, 264-265.	0.5	Ο
12	48 Genomic Studies of Feed Efficiency and Component Traits in American Mink. Journal of Animal Science, 2021, 99, 24-25.	0.5	0
13	47 Genomic Studies of Reproductive Performance in American Mink. Journal of Animal Science, 2021, 99, 26-27.	0.5	1
14	Evaluation of Growth Curve Models for Body Weight in American Mink. Animals, 2020, 10, 22.	2.3	25
15	Selection for Favorable Health Traits: A Potential Approach to Cope with Diseases in Farm Animals. Animals, 2020, 10, 1717.	2.3	15
16	Genome-wide association studies for methane emission and ruminal volatile fatty acids using Holstein cattle sequence data. BMC Genetics, 2020, 21, 129.	2.7	7
17	A genome-wide signatures of selection study of Welsh ponies and draft horses revealed five genes associated with horse type variation. Gene Reports, 2020, 21, 100833.	0.8	4
18	Signatures of selection analysis using whole-genome sequence data reveals novel candidate genes for pony and light horse types. Genome, 2020, 63, 387-396.	2.0	10

YOUNES MIAR

#	Article	IF	CITATIONS
19	Whole-Genome Signatures of Selection in Sport Horses Revealed Selection Footprints Related to Musculoskeletal System Development Processes. Animals, 2020, 10, 53.	2.3	15
20	Linkage Disequilibrium, Effective Population Size and Genomic Inbreeding Rates in American Mink Using Genotyping-by-Sequencing Data. Frontiers in Genetics, 2020, 11, 223.	2.3	8
21	PSVII-39 Late-Breaking Abstract: Enhancing production and Aleutian disease resilience in mink through advanced genomics. Journal of Animal Science, 2020, 98, 342-342.	0.5	1
22	9 A comparison of different genomic prediction methods in the Canadian Landrace swine population. Journal of Animal Science, 2020, 98, 10-10.	0.5	0
23	12 Genetic and phenotypic parameters for Aleutian disease tests and their correlations with growth and pelt quality traits in American mink. Journal of Animal Science, 2020, 98, 17-18.	0.5	Ο
24	PSXII-24 Identification of selection signatures for response of American mink to Aleutian mink disease virus infection. Journal of Animal Science, 2020, 98, 243-244.	0.5	0
25	PSVIII-38 Late-Breaking Abstract: Estimating genetic parameters of feed efficiency traits in American mink. Journal of Animal Science, 2020, 98, 347-347.	0.5	Ο
26	Opportunities for genomic selection in American mink: A simulation study. PLoS ONE, 2019, 14, e0213873.	2.5	11
27	PSVIII-31 Genome-wide estimation of linkage disequilibrium using American mink genotyping-by-sequencing data. Journal of Animal Science, 2019, 97, 267-267.	0.5	Ο
28	PSXIV-23 Prediction accuracies of genomic selection in American mink: a simulation study Journal of Animal Science, 2018, 96, 140-140.	0.5	0
29	304 Genetic trends for reproductive traits in American mink Journal of Animal Science, 2018, 96, 115-116.	0.5	Ο
30	Genetic and phenotypic parameters for litter size, survival rate, gestation length, and litter weight traits in American mink1. Journal of Animal Science, 2018, 96, 2596-2606.	0.5	16
31	A comparison of different algorithms for phasing haplotypes using Holstein cattle genotypes and pedigree data. Journal of Dairy Science, 2017, 100, 2837-2849.	3.4	20
32	Genome Wide Association Studies (GWAS) Identify QTL on SSC2 and SSC17 Affecting Loin Peak Shear Force in Crossbred Commercial Pigs. PLoS ONE, 2016, 11, e0145082.	2.5	6
33	Genomic Selection, a New Era for Pork Quality Improvement. Springer Science Reviews, 2015, 3, 27-37.	1.3	9
34	Genome-wide association studies (GWAS) identify a QTL close to PRKAG3 affecting meat pH and colour in crossbred commercial pigs. BMC Genetics, 2015, 16, 33.	2.7	33
35	Genetic and phenotypic parameters for carcass and meat quality traits in commercial crossbred pigs1. Journal of Animal Science, 2014, 92, 2869-2884.	0.5	70
36	Estimation of genetic and phenotypic parameters for ultrasound and carcass merit traits in crossbred beef cattle. Canadian Journal of Animal Science, 2014, 94, 273-280.	1.5	22

#	Article	IF	CITATIONS
37	Genetic and Phenotypic Correlations between Performance Traits with Meat Quality and Carcass Characteristics in Commercial Crossbred Pigs. PLoS ONE, 2014, 9, e110105.	2.5	42
38	Application of Genetic, Genomic and Biological Pathways in Improvement of Swine Feed Efficiency. Frontiers in Genetics, 0, 13, .	2.3	4