Panpan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2362363/publications.pdf Version: 2024-02-01

DANDANLI

#	Article	IF	CITATIONS
1	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	23.0	646
2	Stretchable Allâ€Gelâ€State Fiberâ€Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Advanced Materials, 2018, 30, e1800124.	11.1	396
3	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	16.1	336
4	Metallic Co ₂ P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting. Green Chemistry, 2016, 18, 1459-1464.	4.6	254
5	A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy and Environmental Science, 2021, 14, 3522-3531.	15.6	243
6	Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 18593-18599.	5.2	109
7	A Surfaceâ€ S trained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie - International Edition, 2020, 59, 22610-22616.	7.2	100
8	Probing Enhanced Site Activity of Co–Fe Bimetallic Subnanoclusters Derived from Dual Cross-Linked Hydrogels for Oxygen Electrocatalysis. ACS Energy Letters, 2019, 4, 1793-1802.	8.8	99
9	A one-step synthesis of Co–P–B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. Journal of Materials Chemistry A, 2014, 2, 18420-18427.	5.2	96
10	Porous Two-dimensional Iron-Cyano Nanosheets for High-rate Electrochemical Nitrate Reduction. ACS Nano, 2022, 16, 1072-1081.	7.3	89
11	Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Materials Today, 2020, 35, 78-86.	8.3	88
12	Gel Electrocatalysts: An Emerging Material Platform for Electrochemical Energy Conversion. Advanced Materials, 2020, 32, e2003191.	11.1	78
13	Highly Active 3D-Nanoarray-Supported Oxygen-Evolving Electrode Generated From Cobalt-Phytate Nanoplates. Chemistry of Materials, 2016, 28, 153-161.	3.2	69
14	Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds. Energy Storage Materials, 2018, 12, 232-240.	9.5	66
15	Enhanced Electrocatalytic Performance for Oxygen Reduction via Active Interfaces of Layer-By-Layered Titanium Nitride/Titanium Carbonitride Structures. Scientific Reports, 2014, 4, 6712.	1.6	59
16	Emerging Electrochemical Techniques for Probing Site Behavior in Single-Atom Electrocatalysts. Accounts of Chemical Research, 2022, 55, 759-769.	7.6	58
17	Enhancing catalytic formaldehyde oxidation on CuO–Ag2O nanowires for gas sensing and hydrogen evolution. Journal of Materials Chemistry A, 2013, 1, 14736.	5.2	52
18	Recent progress in conductive polymers for advanced fiber-shaped electrochemical energy storage devices. Materials Chemistry Frontiers, 2021, 5, 1140-1163.	3.2	51

Panpan Li

#	Article	IF	CITATIONS
19	A phytic acid etched Ni/Fe nanostructure based flexible network as a high-performance wearable hybrid energy storage device. Journal of Materials Chemistry A, 2017, 5, 3274-3283.	5.2	48
20	Superficial-defect engineered nickel/iron oxide nanocrystals enable high-efficient flexible fiber battery. Energy Storage Materials, 2018, 13, 160-167.	9.5	48
21	Enzyme-Regulated Healable Polymeric Hydrogels. ACS Central Science, 2020, 6, 1507-1522.	5.3	48
22	Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis. Applied Catalysis B: Environmental, 2022, 315, 121548.	10.8	44
23	Bioinspired Self-Healing of Kinetically Inert Hydrogels Mediated by Chemical Nutrient Supply. ACS Applied Materials & Interfaces, 2020, 12, 6471-6478.	4.0	42
24	A Hydrogenâ€Evolving Hybridâ€Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation. ChemSusChem, 2017, 10, 483-488.	3.6	38
25	Transient Healability of Metallosupramolecular Polymer Networks Mediated by Kinetic Control of Competing Chemical Reactions. Macromolecules, 2020, 53, 2856-2863.	2.2	30
26	Self-enhanced electrogenerated chemiluminescence of ruthenium(<scp>ii</scp>) complexes conjugated with Schiff bases. Dalton Transactions, 2015, 44, 2208-2216.	1.6	28
27	Three-dimensional flexible electrode derived from low-cost nickel–phytate with improved electrochemical performance. Journal of Materials Chemistry A, 2016, 4, 9486-9495.	5.2	28
28	Enhanced electrochemical performance of C-NiO/NiCo2O4//AC asymmetric supercapacitor based on material design and device exploration. Electrochimica Acta, 2019, 296, 335-344.	2.6	27
29	Photoanode-immobilized molecular cobalt-based oxygen-evolving complexes with enhanced solar-to-fuel efficiency. Journal of Materials Chemistry A, 2016, 4, 11228-11233.	5.2	24
30	Tri-metallic phytate in situ electrodeposited on 3D Ni foam as a highly efficient electrocatalyst for enhanced overall water splitting. Journal of Materials Chemistry A, 2017, 5, 18786-18792.	5.2	24
31	Lab-based investigation of enhanced BTEX attenuation driven by groundwater table fluctuation. Chemosphere, 2017, 169, 678-684.	4.2	23
32	A Surface‣trained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie, 2020, 132, 22799-22805.	1.6	23
33	Boron―and Ironâ€Incorporated αâ€Co(OH) ₂ Ultrathin Nanosheets as an Efficient Oxygen Evolution Catalyst. ChemElectroChem, 2018, 5, 593-597.	1.7	21
34	Interconnecting 3D Conductive Networks with Nanostructured Iron/Iron Oxide Enables a High-Performance Flexible Battery. ACS Applied Materials & Interfaces, 2021, 13, 57411-57421.	4.0	19
35	Design principles of hydrogen-evolution-suppressing single-atom catalysts for aqueous electrosynthesis. Chem Catalysis, 2022, 2, 1277-1287.	2.9	19
36	CuO–Ag2O nanoparticles grown on a AgCuZn alloy substrate in situ for use as a highly sensitive non-enzymatic glucose sensor. Analytical Methods, 2014, 6, 2215.	1.3	17

Panpan Li

#	Article	IF	CITATIONS
37	Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress. Chemical Physics Reviews, 2021, 2, .	2.6	17
38	Enhanced catalytic performance of ZnO-CoOx electrode generated from electrochemical corrosion of Co-Zn alloy for oxygen evolution reaction. Electrochimica Acta, 2016, 222, 999-1006.	2.6	15
39	A highly sensitive luminescent probe based on Ru(II)-bipyridine complex for Cu2+, l-Histidine detection and cellular imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 161-169.	2.0	14
40	Dispersive liquid phase micro-extraction of aromatic amines in environmental water samples. International Journal of Environmental Analytical Chemistry, 2010, 90, 1099-1107.	1.8	11
41	Amoeba-inspired reengineering of polymer networks. Green Chemistry, 2021, 23, 2496-2506.	4.6	9
42	Highly Selective and Sensitive Luminescent Turnâ€On Probe for Pyrophosphate Detection in Aqueous Solution. ChemistrySelect, 2018, 3, 10057-10063.	0.7	8
43	Comprehensive insights into the organic fractions on solid–liquid separation performance of anaerobic digestates from food waste. Science of the Total Environment, 2021, 800, 149608.	3.9	8
44	Systems Chemistry in Selfâ€Healing Materials. ChemSystemsChem, 2021, 3, e2100016.	1.1	6
45	Lithiated interface of Pt/TiO ₂ enables an efficient wire-shaped Zn–Air solar micro-battery. Chemical Communications, 2022, 58, 5988-5991.	2.2	5
46	Non-oxidative Propane Dehydrogenation over Vanadium Doped Graphitic Carbon Nitride Catalysts. Catalysis Letters, 2023, 153, 1120-1129.	1.4	5
47	Preparing porous Cu/Pd electrode on nickel foam using hydrogen bubbles dynamic template for high-efficiency and high-stability removal of nitrate from water. Environmental Science and Pollution Research, 2022, 29, 57629-57643.	2.7	4
48	Feedback-controlled topological reconfiguration of molecular assemblies for programming supramolecular structures. Soft Matter, 2022, 18, 3856-3866.	1.2	4
49	The structure and properties of electroless Ni–Mo–Cr–P coatings on copper alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 341-346.	0.8	3
50	Enhanced dewaterability of waste-activated sludge with zero-valent iron-activated persulfate oxidation under mild hydrothermal conditions. Water Science and Technology, 2022, 85, 851-861.	1.2	2
51	Rücktitelbild: A Surface‣trained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis (Angew. Chem. 50/2020). Angewandte Chemie, 2020, 132, 22992-22992.	1.6	0