
Paulo Jc Favas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2362135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. , 2016, 55, 54.		246
2	Accumulation of arsenic by aquatic plants in large-scale field conditions: Opportunities for phytoremediation and bioindication. Science of the Total Environment, 2012, 433, 390-397.	3.9	126
3	Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: Environmental implications. Journal of Geochemical Exploration, 2011, 111, 160-171.	1.5	116
4	Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: A potential plant for phytoremediation. Ecotoxicology and Environmental Safety, 2014, 108, 249-257.	2.9	94
5	Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere, 2017, 171, 544-553.	4.2	92
6	Accumulation of Trace Metals by Mangrove Plants in Indian Sundarban Wetland: Prospects for Phytoremediation. International Journal of Phytoremediation, 2015, 17, 885-894.	1.7	76
7	URANIUM ACCUMULATION BY AQUATIC PLANTS FROM URANIUM-CONTAMINATED WATER IN CENTRAL PORTUGAL. International Journal of Phytoremediation, 2012, 14, 221-234.	1.7	74
8	Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environmental Science and Pollution Research, 2015, 22, 4597-4608.	2.7	70
9	Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation. Science of the Total Environment, 2014, 470-471, 993-1002.	3.9	68
10	Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Science of the Total Environment, 2016, 568, 350-368.	3.9	57
11	Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecological Engineering, 2014, 69, 170-176.	1.6	55
12	Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland. Marine Pollution Bulletin, 2017, 124, 1078-1088.	2.3	54
13	Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere, 2013, 90, 2216-2225.	4.2	49
14	Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Ecotoxicology and Environmental Safety, 2018, 148, 318-326.	2.9	44
15	Assessment of mercury heavy metal toxicity-induced physiochemical and molecular changes in Sesbania grandiflora L International Journal of Environmental Science and Technology, 2015, 12, 3273-3282.	1.8	42
16	Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere, 2018, 194, 158-170.	4.2	40
17	Mineralogical controls on mine drainage of the abandoned Ervedosa tin mine in north-eastern Portugal. Applied Geochemistry, 2006, 21, 1322-1334.	1.4	38
18	Distribution of rare earth elements, thorium and uranium in streams and aquatic mosses of Central Portugal. Environmental Earth Sciences, 2017, 76, 1.	1.3	25

Paulo Jc Favas

#	Article	IF	CITATIONS
19	Effect of <i>Glomus mosseae</i> on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal(loid) Stress. International Journal of Phytoremediation, 2018, 20, 885-894.	1.7	25
20	Uranium accumulation in aquatic macrophytes in an uraniferous region: Relevance to natural attenuation. Chemosphere, 2016, 156, 76-87.	4.2	24
21	Abandoned Mine Land Reclamation—Challenges and Opportunities (Holistic Approach). , 2018, , 3-31.		23
22	Nickel accumulation by Alyssum serpyllifolium subsp. lusitanicum (Brassicaceae) from serpentine soils of Bragança and Morais (Portugal) ultramafic massifs: plant–soil relationships and prospects for phytomining. Australian Journal of Botany, 2015, 63, 17.	0.3	20
23	Metal(loid) induced toxicity and defense mechanisms in Spinacia oleracea L.: Ecological hazard and Prospects for phytoremediation. Ecotoxicology and Environmental Safety, 2019, 183, 109570.	2.9	18
24	Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 867-873.	1.3	17
25	Acid Mine Drainages From Abandoned Mines. , 2016, , 413-462.		16
26	EDTA-Assisted Metal Uptake in Raphanus sativus L. and Brassica oleracea L.: Assessment of Toxicity and Food Safety. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 490-495.	1.3	14
27	Remediation of Uranium-Contaminated Sites by Phytoremediation and Natural Attenuation. , 2019, , 277-300.		14
28	Uptake of uranium by native aquatic plants: potential for bioindication and phytoremediation. E3S Web of Conferences, 2013, 1, 13007.	0.2	14
29	Temporal variation in the arsenic and metal accumulation in the maritime pine tree grown on contaminated soils. International Journal of Environmental Science and Technology, 2013, 10, 809-826.	1.8	13
30	Hydrochemistry of superficial waters in the Adoria mine area (Northern Portugal): environmental implications. Environmental Earth Sciences, 2012, 65, 363-372.	1.3	8
31	Mycoremediation for Mine Site Rehabilitation. , 2018, , 233-260.		8
32	Geochemical Fractionation of Trace Elements in Stream Sediments Contaminated by Mining Activity. Clean - Soil, Air, Water, 2015, 43, 446-455.	0.7	7
33	Uranium Bioavailability and Environmental Risk Assessment in Soils Contaminated by Mining. IERI Procedia, 2014, 9, 43-46.	0.3	5
34	Geochemical anomalies from a survey of stream sediments in the Maquelab area (Oecusse, Timor-Leste) and their bearing on the identification of mafic-ultramafic chromite rich complex. Applied Geochemistry, 2021, 126, 104868.	1.4	5
35	F – Goldschmidt Abstracts 2013. Mineralogical Magazine, 2013, 77, 1058-1124.	0.6	4
36	G – Goldschmidt Abstracts 2013. Mineralogical Magazine, 2013, 77, 1125-1238.	0.6	4

Paulo Jc Favas

#	Article	IF	CITATIONS
37	Phytofiltration of Metal(loid)-Contaminated Water: The Potential of Native Aquatic Plants. , 2016, , 305-343.		2
38	Geomedicine and History of Science: A Contribution to Scientific Culture. , 2016, , 207-223.		2
39	URANIUM IN SOILS, WATERS AND PLANTS OF THE AN ABANDONED URANIUM MINE (CENTRAL PORTUGAL). , 2012, , .		2
40	Heavy metals biogeochemistry in abandoned mining areas. E3S Web of Conferences, 2013, 1, 19006.	0.2	1
41	Adsorption of arsenic to different natural solids: Soils, stream sediments and peats. , 2012, , 168-169.		1
42	MULTIVARIATE ANALYSIS APPLIED TO THE HYDROCHEMICAL STUDY OF ACID MINE DRAINAGES AND SURROUNDINGS SUPERFICIAL WATERS (NORTH PORTUGAL). , 2013, , .		1
43	IN-SITU PHYTOEXTRACTION OF NICKEL BY ODONTARRHENA SERPYLLIFOLIA ON ULTRAMAFIC SOILS OF PORTUGAL. , 2019, , .		1
44	Chemical speciation of heavy metals and arsenic in tailings and soils contaminated by mining activities (Northern Portugal). Diqiu Huaxue, 2006, 25, 31-31.	0.5	0
45	Biomonitoring of metals by aquatic mosses in a mining region. Journal of Biotechnology, 2017, 256, S59.	1.9	0
46	METAL(LOID) UPTAKE BY SPONTANEOUS VEGETATION IN MINE TAILINGS AND CONTAMINATED SOIL: IMPLICATIONS FOR ENVIRONMENTAL REMEDIATION. , $2011, , .$		0
47	Valuation of the Mining Heritage of Regoufe and Rio de Frades Mines (Arouca Geopark. Portugal). , 2012, , 259-266.		0
48	ACCUMULATIONïį¼2OFïį¼2TUNGSTENïį¼2INïį¼2NATIVEïį¼2PLANTSïį¼2OFïį¼2MININGïį¼2AREASïį¼2RELATEDïį , 2012, , .	′₂WITHï¿1∕2	2THEIRïż½MO
49	ENVIRONMENTAL RISK ASSOCIATED WITH HEAVY METAL POLLUTION IN SOILS BASED ON GEOCHEMICAL FRACTIONATION. , 2013, , .		Ο
50	Phytoremediation potential of native flora of arsenic-contaminated soils. Arsenic in the Environment Proceedings, 2014, , 298-299.	0.0	0
51	ASSESSMENT OF ARSENIC AND HEAVY METALS POLLUTION IN STREAM SEDIMENTS AFFECTED BY MINING USING GEOACCUMULATION INDEX. , 2014, , .		Ο
52	FUNCTIONALIST ARCHITECTURE OF BATACOMPANY IN THE CITY ZLIN. , 2017, , .		0
53	FLOOD PROTECTION IN ZBOROV, SLOVAKIA - ENVIRONMENTAL IMPACT ASSESSMENT. , 2017, , .		0
54	MULTIVARIATE ANALYSIS APPLIED TO THE STUDY OF ACID MINE DRAINAGES AND SURROUNDINGS SUPERFICIAL WATERS (ERVEDOSA MINE, NORTHERN PORTUGAL). , 2018, , .		0

#	Article	IF	CITATIONS
55	ARSENIC ACCUMULATION, STRESS RESPONSES AND TOLERANCE IN AGROSTIS CASTELLANA: PHYTOREMEDIATION POTENTIAL OF NATIVE FLORA. , 2019, , .		0