Wei-Qun Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2360930/publications.pdf

Version: 2024-02-01

347 papers 13,807 citations

23544 58 h-index 98 g-index

359 all docs 359 docs citations

359 times ranked

7790 citing authors

#	Article	IF	CITATIONS
1	Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chemical Engineering Journal, 2012, 210, 539-546.	6.6	402
2	Introduction of amino groups into acid-resistant MOFs for enhanced U(<scp>vi</scp>) sorption. Journal of Materials Chemistry A, 2015, 3, 525-534.	5.2	378
3	Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. ACS Nano, 2017, 11, 3841-3850.	7.3	370
4	Enhanced Photocatalytic Removal of Uranium(VI) from Aqueous Solution by Magnetic TiO ₂ /Fe ₃ O ₄ and Its Graphene Composite. Environmental Science & Environmental Science	4.6	292
5	Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: Insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chemical Engineering Journal, 2017, 328, 1066-1074.	6.6	266
6	MOF-76: from a luminescent probe to highly efficient U ^{VI} sorption material. Chemical Communications, 2013, 49, 10415-10417.	2.2	257
7	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62, 933-967.	4.2	256
8	Efficient U(VI) Reduction and Sequestration by Ti ₂ CT _{<i>x</i>} MXene. Environmental Science & Environmenta	4.6	253
9	Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. Journal of Hazardous Materials, 2015, 290, 26-33.	6.5	231
10	Excellent Selectivity for Actinides with a Tetradentate 2,9-Diamide-1,10-Phenanthroline Ligand in Highly Acidic Solution: A Hard–Soft Donor Combined Strategy. Inorganic Chemistry, 2014, 53, 1712-1720.	1.9	219
11	Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16396-16403.	4.0	214
12	Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 2017, 53, 12084-12087.	2.2	198
13	U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 269-276.	0.7	176
14	Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Applied Catalysis B: Environmental, 2020, 267, 118688.	10.8	170
15	Defect engineering in metal–organic frameworks: a new strategy to develop applicable actinide sorbents. Chemical Communications, 2018, 54, 370-373.	2.2	167
16	Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. Journal of Hazardous Materials, 2020, 396, 122731.	6.5	166
17	Effective Removal of Anionic Re(VII) by Surface-Modified Ti ₂ CT _{<i>x</i>} MXene Nanocomposites: Implications for Tc(VII) Sequestration. Environmental Science & Environmental Scien	4.6	163
18	Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chemical Engineering Journal, 2019, 366, 192-199.	6.6	163

#	Article	IF	CITATIONS
19	Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture. ACS Applied Materials & Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture. ACS Applied Materials & Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture. ACS Applied Materials & Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture. ACS Applied Materials & Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture. ACS Applied Materials & Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture. ACS Applied Materials & Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture. ACS Applied Materials & Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture.	4.0	158
20	High performance of phosphonate-functionalized mesoporous silica for $U(vi)$ sorption from aqueous solution. Dalton Transactions, 2011, 40, 7446.	1.6	152
21	Impact of Al ₂ O ₃ on the Aggregation and Deposition of Graphene Oxide. Environmental Science & Environmental Science & Environment	4.6	144
22	A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. Journal of Materials Chemistry, 2012, 22, 17019.	6.7	128
23	Nanolayered Ti ₃ C ₂ and SrTiO ₃ Composites for Photocatalytic Reduction and Removal of Uranium(VI). ACS Applied Nano Materials, 2019, 2, 2283-2294.	2.4	119
24	Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. Coordination Chemistry Reviews, 2012, 256, 1406-1417.	9.5	117
25	Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 2016, 308, 402-410.	6.5	115
26	Aryl Diazonium-Assisted Amidoximation of MXene for Boosting Water Stability and Uranyl Sequestration via Electrochemical Sorption. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15579-15587.	4.0	115
27	Introduction of Bifunctional Groups into Mesoporous Silica for Enhancing Uptake of Thorium(IV) from Aqueous Solution. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4786-4796.	4.0	113
28	Different Interaction Mechanisms of Eu(III) and ²⁴³ Am(III) with Carbon Nanotubes Studied by Batch, Spectroscopy Technique and Theoretical Calculation. Environmental Science & Eamp; Technology, 2015, 49, 11721-11728.	4.6	113
29	Theoretical Insights on the Interaction of Uranium with Amidoxime and Carboxyl Groups. Inorganic Chemistry, 2014, 53, 9466-9476.	1.9	103
30	Radiation Controllable Synthesis of Robust Covalent Organic Framework Conjugates for Efficient Dynamic Column Extraction of 99TcO4â^'. CheM, 2020, 6, 2796-2809.	5.8	103
31	Trivalent Actinide and Lanthanide Separations by Tetradentate Nitrogen Ligands: A Quantum Chemistry Study. Inorganic Chemistry, 2011, 50, 9230-9237.	1.9	96
32	Understanding the Bonding Nature of Uranyl Ion and Functionalized Graphene: A Theoretical Study. Journal of Physical Chemistry A, 2014, 118, 2149-2158.	1.1	96
33	Simultaneous elimination of cationic uranium(<scp>vi</scp>) and anionic rhenium(<scp>vii</scp>) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study. Environmental Science: Nano, 2018, 5, 2077-2087.	2.2	95
34	Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. Journal of Hazardous Materials, 2021, 408, 124949.	6.5	95
35	A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 803-810.	0.7	92
36	Sorption of Eu(III) on MXene-derived titanate structures: The effect of nano-confined space. Chemical Engineering Journal, 2019, 370, 1200-1209.	6.6	91

#	Article	IF	Citations
37	Exploring Actinide Materials Through Synchrotron Radiation Techniques. Advanced Materials, 2014, 26, 7807-7848.	11.1	89
38	Anion-adaptive crystalline cationic material for 99TcO4â^' trapping. Nature Communications, 2019, 10, 1532.	5.8	87
39	New Insight into GO, Cadmium(II), Phosphate Interaction and Its Role in GO Colloidal Behavior. Environmental Science & Environmental Science & Environ	4.6	85
40	Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 2017, 426, 572-578.	3.1	83
41	Evaluation of the Electroextractions of Ce and Nd from LiCl-KCl Molten Salt Using Liquid Ga Electrode. Journal of the Electrochemical Society, 2017, 164, D169-D178.	1.3	76
42	Carboxylated UiO-66 Tailored for U(VI) and Eu(III) Trapping: From Batch Adsorption to Dynamic Column Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16300-16308.	4.0	74
43	Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Science China Chemistry, 2012, 55, 1705-1711.	4.2	7 3
44	Density Functional Theory Studies of UO ₂ ²⁺ and NpO ₂ ⁺ Complexes with Carbamoylmethylphosphine Oxide Ligands. Inorganic Chemistry, 2013, 52, 196-203.	1.9	73
45	Theoretical Investigation on Multiple Bonds in Terminal Actinide Nitride Complexes. Inorganic Chemistry, 2014, 53, 9607-9614.	1.9	73
46	Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides. Dalton Transactions, 2014, 43, 8713.	1.6	72
47	Solarâ€Driven Nitrogen Fixation Catalyzed by Stable Radicalâ€Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angewandte Chemie - International Edition, 2020, 59, 20666-20671.	7.2	71
48	Large-Pore 3D Cubic Mesoporous (KIT-6) Hybrid Bearing a Hard–Soft Donor Combined Ligand for Enhancing U(VI) Capture: An Experimental and Theoretical Investigation. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 3774-3784.	4.0	70
49	Theoretically unraveling the separation of Am(<scp>iii</scp>)/Eu(<scp>iii</scp>): insights from mixed N,O-donor ligands with variations of central heterocyclic moieties. Physical Chemistry Chemical Physics, 2017, 19, 26969-26979.	1.3	69
50	Induced-polarization detection and mapping of contaminant plumes. Geophysics, 2006, 71, B75-B84.	1.4	68
51	Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm-Zn alloys. Electrochimica Acta, 2014, 120, 369-378.	2.6	67
52	Combined DFT and XPS investigation of iodine anions adsorption on the sulfur terminated (001) chalcopyrite surface. Applied Surface Science, 2016, 390, 412-421.	3.1	65
53	Electrochemical Properties of Uranium on the Liquid Gallium Electrode in LiCl-KCl Eutectic. Journal of the Electrochemical Society, 2016, 163, D554-D561.	1.3	65
54	Photocatalytic reduction of uranium(VI) under visible light with 2D/1D Ti3C2/CdS. Chemical Engineering Journal, 2021, 420, 129831.	6.6	64

#	Article	IF	Citations
55	Europium, uranyl, and thorium-phenanthroline amide complexes in acetonitrile solution: an ESI-MS and DFT combined investigation. Dalton Transactions, 2015, 44, 14376-14387.	1.6	63
56	Electrochemical behaviors of Dy(III) and its co-reduction with Al(III) in molten LiCl-KCl salts. Electrochimica Acta, 2014, $147,87-95$.	2.6	62
57	Quantum Chemistry Study of Uranium(VI), Neptunium(V), and Plutonium(IV,VI) Complexes with Preorganized Tetradentate Phenanthrolineamide Ligands. Inorganic Chemistry, 2014, 53, 10846-10853.	1.9	61
58	Highly selective extraction of Pu (IV) and Am (III) by N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline ligand: An experimental and theoretical study. Separation and Purification Technology, 2019, 223, 274-281.	3.9	59
59	Understanding the Interactions of Neptunium and Plutonium Ions with Graphene Oxide: Scalar-Relativistic DFT Investigations. Journal of Physical Chemistry A, 2014, 118, 10273-10280.	1.1	57
60	Solventâ€Dependent Synthesis of Porous Anionic Uranyl–Organic Frameworks Featuring a Highly Symmetrical (3,4)â€Connected <i>ctn</i> or <i>bor</i> Topology for Selective Dye Adsorption. Chemistry - A European Journal, 2017, 23, 529-532.	1.7	57
61	Interactions between Th(<scp>iv</scp>) and graphene oxide: experimental and density functional theoretical investigations. RSC Advances, 2014, 4, 3340-3347.	1.7	56
62	Novel Viologen Derivative Based Uranyl Coordination Polymers Featuring Photochromic Behaviors. Chemistry - A European Journal, 2017, 23, 18074-18083.	1.7	56
63	Actinide Separation Inspired by Self-Assembled Metal–Polyphenolic Nanocages. Journal of the American Chemical Society, 2020, 142, 16538-16545.	6.6	56
64	Heteroaggregation behavior of graphene oxide on Zr-based metal–organic frameworks in aqueous solutions: a combined experimental and theoretical study. Journal of Materials Chemistry A, 2017, 5, 20398-20406.	5.2	53
65	A new solvent system containing N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline in 1-(trifluoromethyl)-3-nitrobenzene for highly selective UO 2 2+ extraction. Separation and Purification Technology, 2016, 168, 232-237.	3.9	52
66	Electroextraction of gadolinium from Gd2O3 in LiCl–KCl–AlCl3 molten salts. Electrochimica Acta, 2013, 109, 732-740.	2.6	51
67	Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation. Environmental Pollution, 2019, 248, 82-89.	3.7	51
68	The first case of an actinide polyrotaxane incorporating cucurbituril: a unique †dragon-like†twist induced by a specific coordination pattern of uranium. Chemical Communications, 2014, 50, 3612-3615.	2.2	50
69	Complexation Behavior of Eu(III) and Am(III) with CMPO and Ph ₂ CMPO Ligands: Insights from Density Functional Theory. Inorganic Chemistry, 2013, 52, 10904-10911.	1.9	48
70	Solvent extraction of U(VI) by trioctylphosphine oxide using a room-temperature ionic liquid. Science China Chemistry, 2014, 57, 1432-1438.	4.2	48
71	Theoretical Insights into Preorganized Pyridylpyrazole-Based Ligands toward the Separation of Am(III)/Eu(III). Inorganic Chemistry, 2018, 57, 14810-14820.	1.9	48
72	Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands. Inorganic Chemistry, 2019, 58, 10047-10056.	1.9	48

#	Article	IF	CITATIONS
73	Enhanced photocatalytic reduction of aqueous Re(VII) in ambient air by amorphous TiO2/g-C3N4 photocatalysts: Implications for Tc(VII) elimination. Chemical Engineering Journal, 2020, 401, 125977.	6.6	48
74	Rational Construction of Porous Metal–Organic Frameworks for Uranium(VI) Extraction: The Strong Periodic Tendency with a Metal Node. ACS Applied Materials & Diterfaces, 2020, 12, 14087-14094.	4.0	48
75	Thermodynamic Study on the Complexation of Am(III) and Eu(III) with Tetradentate Nitrogen Ligands: A Probe of Complex Species and Reactions in Aqueous Solution. Journal of Physical Chemistry A, 2012, 116, 504-511.	1.1	46
76	New insights into the selectivity of four 1,10-phenanthroline-derived ligands toward the separation of trivalent actinides and lanthanides: a DFT based comparison study. Dalton Transactions, 2016, 45, 8107-8117.	1.6	46
77	Solarâ€Driven Nitrogen Fixation Catalyzed by Stable Radicalâ€Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angewandte Chemie, 2020, 132, 20847-20852.	1.6	46
78	Electrochemical behavior of La(III) on the zinc-coated W electrode in LiCl-KCl eutectic. Electrochimica Acta, 2015, 168, 206-215.	2.6	45
79	Supramolecular inclusion-based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks. Chemical Communications, 2015, 51, 11990-11993.	2.2	44
80	Silver Ion-Mediated Heterometallic Three-Fold Interpenetrating Uranyl–Organic Framework. Inorganic Chemistry, 2015, 54, 10934-10945.	1.9	44
81	Electrochemical and thermodynamic properties of Nd (III)/Nd (0) couple at liquid Zn electrode in LiCl-KCl melt. Electrochimica Acta, 2016, 191, 1026-1036.	2.6	44
82	Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environmental Science: Nano, 2020, 7, 724-752.	2.2	44
83	Probing the Influence of Phosphonate Bonding Modes to Uranium(VI) on Structural Topology and Stability: A Complementary Experimental and Computational Investigation. Inorganic Chemistry, 2015, 54, 3864-3874.	1.9	43
84	Electrochemical Extraction of Cerium by Forming Ce-Zn Alloys in LiCl-KCl Eutectic on W and Liquid Zn Electrodes. Journal of the Electrochemical Society, 2015, 162, E179-E184.	1.3	43
85	Nanomaterials and nanotechnologies in nuclear energy chemistry. Radiochimica Acta, 2012, 100, 727-736.	0.5	42
86	Actinide (An = Th–Pu) dimetallocenes: promising candidates for metal–metal multiple bonds. Dalton Transactions, 2015, 44, 17045-17053.	1.6	41
87	Coordination of Eu(III) with 1,10-Phenanthroline-2,9-dicarboxamide Derivatives: A Combined Study by MS, TRLIF, and DFT. Inorganic Chemistry, 2019, 58, 10239-10247.	1.9	41
88	Potassium Ions Induced Framework Interpenetration for Enhancing the Stability of Uranium-Based Porphyrin MOF with Visible-Light-Driven Photocatalytic Activity. Inorganic Chemistry, 2021, 60, 651-659.	1.9	40
89	The first case of actinide triple helices: pH-dependent structural evolution and kinetically-controlled transformation of two supramolecular conformational isomers. Chemical Communications, 2015, 51, 8978-8981.	2.2	39
90	Direct separation of uranium from lanthanides (La, Nd, Ce, Sm) in oxide mixture in LiCl-KCl eutectic melt. Electrochimica Acta, 2018, 275, 100-109.	2.6	39

#	Article	IF	CITATIONS
91	A mixed-ligand strategy regulates thorium-based MOFs. Dalton Transactions, 2020, 49, 983-987.	1.6	39
92	Molecular Springâ€like Tripleâ€Helix Coordination Polymers as Dualâ€Stress and Thermally Responsive Crystalline Metal–Organic Materials. Angewandte Chemie - International Edition, 2020, 59, 16061-16068.	7.2	39
93	A facile additive-free method for tunable fabrication of UO2 and U3O8 nanoparticles in aqueous solution. CrystEngComm, 2014, 16, 2645.	1.3	38
94	Terminal U≡E (E = N, P, As, Sb, and Bi) Bonds in Uranium Complexes: A Theoretical Perspective. Journal of Physical Chemistry A, 2015, 119, 922-930.	1.1	38
95	Ordered Entanglement in Actinide-Organic Coordination Polymers. Bulletin of the Chemical Society of Japan, 2018, 91, 554-562.	2.0	38
96	Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D → 3D Polycatenated Frameworks. Inorganic Chemistry, 2017, 56, 7694-7706.	1.9	37
97	Electrochemical and Thermodynamic Properties of Uranium on the Liquid Bismuth Electrode in LiCl-KCl Eutectic. Journal of the Electrochemical Society, 2018, 165, D722-D730.	1.3	37
98	Actinideâ€Based Porphyrinic MOF as a Dehydrogenation Catalyst. Chemistry - A European Journal, 2018, 24, 16766-16769.	1.7	37
99	Structural Diversity of Bipyridinium-Based Uranyl Coordination Polymers: Synthesis, Characterization, and Ion-Exchange Application. Inorganic Chemistry, 2019, 58, 14075-14084.	1.9	37
100	First-principles study of water adsorption and dissociation on the UO2 (1 1 1), (1 1 0) and (1 0 0) surfaces. Journal of Nuclear Materials, 2014, 454, 446-454.	1.3	36
101	Halogen Bonded Three-Dimensional Uranyl–Organic Compounds with Unprecedented Halogen–Halogen Interactions and Structure Diversity upon Variation of Halogen Substitution. Crystal Growth and Design, 2015, 15, 1395-1406.	1.4	36
102	In-situ anodic precipitation process for highly efficient separation of aluminum alloys. Nature Communications, 2021, 12, 5777.	5.8	36
103	Electroextraction of samarium from Sm2O3 in chloride melts. Electrochimica Acta, 2014, 129, 401-409.	2.6	35
104	First-Principles Study of Water Reaction and H ₂ Formation on UO ₂ (111) and (110) Single Crystal Surfaces. Journal of Physical Chemistry C, 2014, 118, 21935-21944.	1.5	35
105	A Quasi-relativistic Density Functional Theory Study of the Actinyl(VI, V) (An = U, Np, Pu) Complexes with a Six-Membered Macrocycle Containing Pyrrole, Pyridine, and Furan Subunits. Journal of Physical Chemistry A, 2015, 119, 9178-9188.	1.1	35
106	Hexadecylpyridinium (HDPy) modified bentonite for efficient and selective removal of 99Tc from wastewater. Chemical Engineering Journal, 2020, 382, 122894.	6.6	35
107	Visibleâ€Lightâ€Enabled Câ^'H Functionalization by a Direct Hydrogen Atom Transfer Uranyl Photocatalyst. Chemistry - A European Journal, 2020, 26, 16521-16529.	1.7	35
108	Theoretical insights into the separation of Am(<scp>iii</scp>) over Eu(<scp>iii</scp>) with PhenBHPPA. Dalton Transactions, 2015, 44, 16737-16745.	1.6	34

#	Article	IF	CITATIONS
109	Paving the way for the synthesis of a series of divalent actinide complexes: a theoretical perspective. Dalton Transactions, 2016, 45, 3102-3110.	1.6	34
110	The templated synthesis of a unique type of tetra-nuclear uranyl-mediated two-fold interpenetrating uranyl–organic framework. Chemical Communications, 2016, 52, 1641-1644.	2.2	34
111	Hydrophilic Sulfonated 2,9-Diamide-1,10-phenanthroline Endowed with a Highly Effective Ligand for Separation of Americium(III) from Europium(III): Extraction, Spectroscopy, and Density Functional Theory Calculations. Inorganic Chemistry, 2021, 60, 357-365.	1.9	34
112	Porous Cationic Electrospun Fibers with Sufficient Adsorption Sites for Effective and Continuous ⁹⁹ TcO ₄ ^{â^²} Uptake. Advanced Functional Materials, 2022, 32, .	7.8	34
113	Electroseparation of thorium from ThO2 and La2O3 by forming Th-Al alloys in LiCl-KCl eutectic. Electrochimica Acta, 2015, 158, 277-286.	2.6	33
114	Electrodeposition of Tb on Mo and Al electrodes: Thermodynamic properties of TbCl3 and TbAl2 in the LiCl-KCl eutectic melts. Electrochimica Acta, 2015, 167, 139-146.	2.6	33
115	Supramolecular Host–Guest Inclusion for Distinguishing Cucurbit[7]urilâ€Based Pseudorotaxanes from Smallâ€Molecule Ligands in Coordination Assembly with a Uranyl Center. Chemistry - A European Journal, 2017, 23, 13995-14003.	1.7	33
116	Bimetallic Uranyl Organic Frameworks Supported by Transition-Metal-Ion-Based Metalloligand Motifs: Synthesis, Structure Diversity, and Luminescence Properties. Inorganic Chemistry, 2018, 57, 6084-6094.	1.9	33
117	Towards understanding the correlation between UO22+ extraction and substitute groups in 2,9-diamide-1,10-phenanthroline. Science China Chemistry, 2018, 61, 1285-1292.	4.2	33
118	Theoretical insights into selective separation of trivalent actinide and lanthanide by ester and amide ligands based on phenanthroline skeleton. Dalton Transactions, 2020, 49, 4093-4099.	1.6	33
119	Radiation-induced surface modification of silanized silica with n-alkyl-imidazolium ionic liquids and their applications for the removal of ReO4â^2 as an analogue for TcO4â^2. Applied Surface Science, 2021, 551, 149406.	3.1	33
120	Electrochemical extraction of cerium from CeO2 assisted by AlCl3 in molten LiCl-KCl. Electrochimica Acta, 2014, 147, 385-391.	2.6	32
121	Insight into the Extraction Mechanism of Americium(III) over Europium(III) with Pyridylpyrazole: A Relativistic Quantum Chemistry Study. Journal of Physical Chemistry A, 2018, 122, 4499-4507.	1.1	32
122	Efficient Photocatalytic Reduction of Aqueous Perrhenate and Pertechnetate. Environmental Science & En	4.6	32
123	Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa. Aquatic Toxicology, 2019, 209, 113-120.	1.9	32
124	Graphene oxide/chitosan/potassium copper hexacyanoferrate(II) composite aerogel for efficient removal of cesium. Chemical Engineering Journal, 2022, 444, 136397.	6.6	32
125	Size-tunable synthesis of monodisperse thorium dioxide nanoparticles and their performance on the adsorption of dye molecules. CrystEngComm, 2014, 16, 10469-10475.	1.3	31
126	Electrochemical formation of erbium-aluminum alloys from erbia in the chloride melts. Electrochimica Acta, 2014, 116, 434-441.	2.6	31

#	Article	IF	Citations
127	Theoretical studies on the AnO $<$ sub $>2sub><sup>n+sup> (An = U, Np; n = 1, 2) complexes with di-(2-ethylhexyl)phosphoric acid. Dalton Transactions, 2015, 44, 3227-3236.$	1.6	31
128	Performance and Mechanism for the Selective Separation of Trivalent Americium from Lanthanides by a Tetradentate Phenanthroline Ligand in Ionic Liquid. Inorganic Chemistry, 2020, 59, 3905-3911.	1.9	31
129	Co-reduction behaviors of lanthanum and aluminium ions in LiCl-KCl eutectic. Electrochimica Acta, 2014, 147, 104-113.	2.6	30
130	A combined DFT and molecular dynamics study of $U(VI)/calcite$ interaction in aqueous solution. Science Bulletin, 2017, 62, 1064-1073.	4.3	30
131	Extraction of thorium from LiCl–KCl molten salts by forming Al–Th alloys: a new pyrochemical method for the reprocessing of thorium-based spent fuels. RSC Advances, 2013, 3, 23539.	1.7	29
132	Thermodynamic and electrochemical properties of holmium and HoxAly intermetallic compounds in the LiCl-KCl eutectic. Electrochimica Acta, 2015, 174, 15-25.	2.6	29
133	Electrochemical Properties of Lanthanum on the Liquid Gallium Electrode in LiCl-KCl Eutectic. Journal of the Electrochemical Society, 2016, 163, D750-D756.	1.3	29
134	Theoretical studies on the complexation of Eu(III) and Am(III) with HDEHP: structure, bonding nature and stability. Science China Chemistry, 2016, 59, 324-331.	4.2	29
135	Semirigid Tripodal Ligand Based Uranyl Coordination Polymer Isomers Featuring 2D Honeycomb Nets. Inorganic Chemistry, 2018, 57, 4492-4501.	1.9	29
136	Releasing Metal-Coordination Capacity of Cucurbit[6]uril Macrocycle in Pseudorotaxane Ligands for the Construction of Interwoven Uranyl–Rotaxane Coordination Polymers. Inorganic Chemistry, 2018, 57, 13513-13523.	1.9	29
137	Thermodynamics and Kinetics Properties of Lanthanides (La, Ce, Pr, Nd) on Liquid Bismuth Electrode in LiCl-KCl Molten Salt. Journal of the Electrochemical Society, 2020, 167, 122507.	1.3	29
138	Electrochemical separation of Th from ThO2 and Eu2O3 assisted by AlCl3 in molten LiCl–KCl. Electrochimica Acta, 2013, 114, 180-188.	2.6	28
139	Theoretical Prediction of the Potential Applications of Phenanthroline Derivatives in Separation of Transplutonium Elements. Inorganic Chemistry, 2020, 59, 11469-11480.	1.9	28
140	Strong Periodic Tendency of Trivalent Lanthanides Coordinated with a Phenanthroline-Based Ligand: Cascade Countercurrent Extraction, Spectroscopy, and Crystallography. Inorganic Chemistry, 2021, 60, 9745-9756.	1.9	28
141	Tetranuclear Uranyl Polyrotaxanes: Preferred Selectivity toward Uranyl Tetramer for Stabilizing a Flexible Polyrotaxane Chain Exhibiting Weakened Supramolecular Inclusion. Chemistry - A European Journal, 2015, 21, 10226-10235.	1.7	27
142	Rapid Determination of Uranium in Water Samples by Adsorptive Cathodic Stripping Voltammetry Using a Tin-Bismuth Alloy Electrode. Electrochimica Acta, 2015, 174, 925-932.	2.6	27
143	Diffusion Coefficient of Ho3+at Liquid zinc Electrode and Co-reduction Behaviors of Ho3+ and Zn2+ on W Electrode in the LiCl-KCl Eutectic. Electrochimica Acta, 2016, 211, 313-321.	2.6	27
144	Novel Uranyl Coordination Polymers Based on Quinoline-Containing Dicarboxylate by Altering Auxiliary Ligands: From 1D Chain to 3D Framework. Crystal Growth and Design, 2016, 16, 4886-4896.	1.4	27

#	Article	IF	CITATIONS
145	Uranyl Compounds Involving a Weakly Bonded Pseudorotaxane Linker: Combined Effect of pH and Competing Ligands on Uranyl Coordination and Speciation. Inorganic Chemistry, 2019, 58, 3271-3282.	1.9	27
146	Superhydrophobic Phosphonium Modified Robust 3D Covalent Organic Framework for Preferential Trapping of Charge Dispersed Oxoanionic Pollutants. Advanced Functional Materials, 2022, 32, .	7.8	27
147	Electrochemical reactions of the Th4+/Th couple on the tungsten, aluminum and bismuth electrodes in chloride molten salt. Electrochimica Acta, 2014, 130, 650-659.	2.6	26
148	Electrochemical and Thermodynamic Properties of Pr on the Liquid Bi Electrode in LiCl-KCl Eutectic Melt. Journal of the Electrochemical Society, 2018, 165, D452-D460.	1.3	26
149	Technetium-99 decontamination from radioactive wastewater by modified bentonite: batch, column experiment and mechanism investigation. Chemical Engineering Journal, 2022, 428, 131333.	6.6	26
150	Electroreduction of Gd3+on W and Zn Electrodes in LiCl–KCl Eutectic: A Comparison Study. Journal of the Electrochemical Society, 2015, 162, D531-D539.	1.3	25
151	Mixed-Ligand Uranyl Polyrotaxanes Incorporating a Sulfate/Oxalate Coligand: Achieving Structural Diversity via pH-Dependent Competitive Effect. Inorganic Chemistry, 2017, 56, 3227-3237.	1.9	25
152	Insight into the nature of M–C bonding in the lanthanide/actinide-biscarbene complexes: a theoretical perspective. Dalton Transactions, 2018, 47, 12718-12725.	1.6	25
153	Co-reduction behaviors of Ce (III), Al (III) and Ga (III) on a W electrode: An exploration for liquid binary Al-Ga cathode. Electrochimica Acta, 2019, 319, 869-877.	2.6	25
154	Uncovering the impact of  capsule' shaped amine-type ligands on Am(<scp>iii</scp>)/Eu(<scp>iii</scp>) separation. Physical Chemistry Chemical Physics, 2018, 20, 1030-1038.	1.3	24
155	Theoretical Study on Unsupported Uranium–Metal Bonding in Uranium–Group 8 Complexes. Organometallics, 2018, 37, 3678-3686.	1.1	24
156	Copper/Zinc-Directed Heterometallic Uranyl-Organic Polycatenating Frameworks: Synthesis, Characterization, and Anion-Dependent Structural Regulation. Inorganic Chemistry, 2016, 55, 10125-10134.	1.9	23
157	Understanding Am ³⁺ /Cm ³⁺ separation with H ₄ TPAEN and its hydrophilic derivatives: a quantum chemical study. Physical Chemistry Chemical Physics, 2018, 20, 14031-14039.	1.3	23
158	Ultrastable actinide endohedral borospherenes. Chemical Communications, 2018, 54, 2248-2251.	2.2	23
159	Theoretical studies on the synergistic extraction of Am ³⁺ and Eu ³⁺ with CMPOâ€"HDEHP and CMPOâ€"HEH[EHP] systems. Dalton Transactions, 2018, 47, 5474-5482.	1.6	23
160	Large-Pore Layered Networks, Polycatenated Frameworks, and Three-Dimensional Frameworks of Uranyl Tri(biphenyl)amine/Tri(phenyl)amine Tricarboxylate: Solvent-/Ligand-Dependent Dual Regulation. Crystal Growth and Design, 2018, 18, 4347-4356.	1.4	23
161	Application of Binary Ga–Al Alloy Cathode in U Separation from Ce: The Possibility in Pyroprocessing of Spent Nuclear Fuel. Electrochimica Acta, 2020, 353, 136449.	2.6	23
162	Theoretical Insights into Modification of Nitrogen-Donor Ligands to Improve Performance on Am(III)/Eu(III) Separation. Inorganic Chemistry, 2020, 59, 3221-3231.	1.9	23

#	Article	IF	CITATIONS
163	First principles modeling of zirconium solution in bulk UO2. Journal of Applied Physics, 2013, 113, .	1.1	22
164	Bipyridine-Directed Syntheses of Uranyl Compounds Containing Semirigid Dicarboxylate Linkers: Diversity and Consistency in Uranyl Speciation. Inorganic Chemistry, 2019, 58, 6934-6945.	1.9	22
165	Way to Enforce Selectivity via Steric Hindrance: Improvement of Am(III)/Eu(III) Solvent Extraction by Loaded Diphosphonic Acid Esters. Inorganic Chemistry, 2021, 60, 14563-14581.	1.9	22
166	First-principles DFT+U modeling of defect behaviors in anti-ferromagnetic uranium mononitride. Journal of Applied Physics, 2013, 114, .	1.1	21
167	Solvent extraction of uranium(VI) by aÂdipicolinamide using aÂroom-temperature ionic liquid. Radiochimica Acta, 2014, 102, 87-92.	0.5	21
168	Stepwise ortho Chlorination of Carboxyl Groups for Promoting Structure Variance of Heterometallic Uranyl–Silver Coordination Polymers of Isonicotinate. Inorganic Chemistry, 2018, 57, 4673-4685.	1.9	21
169	A neptunium(<scp>v</scp>)-mediated interwoven transuranium-rotaxane network incorporating a mechanically interlocked [<i>c</i> 2]daisy chain unit. Chemical Communications, 2018, 54, 8645-8648.	2.2	21
170	Selective Separation of Am(III)/Eu(III) by the QL-DAPhen Ligand under High Acidity: Extraction, Spectroscopy, and Theoretical Calculations. Inorganic Chemistry, 2021, 60, 19110-19119.	1.9	21
171	Templateâ€Free Synthesis and Mechanistic Study of Porous Threeâ€Dimensional Hierarchical Uraniumâ€Containing and Uranium Oxide Microspheres. Chemistry - A European Journal, 2014, 20, 12655-12662.	1.7	20
172	New Insight of Coordination and Extraction of Uranium(VI) with N-Donating Ligands in Room Temperature Ionic Liquids: $\langle i \rangle N \langle i \rangle, \langle i \rangle,$	1.9	20
173	Easily prepared and stable functionalized magnetic ordered mesoporous silica for efficient uranium extraction. Science China Chemistry, 2016, 59, 629-636.	4.2	20
174	Electrochemical behavior of praseodymium on the W and Al–Zn electrodes in LiCl–KCl eutectic: A comparison study. Electrochimica Acta, 2019, 326, 134971.	2.6	20
175	A new family of actinide sorbents with more open porous structure: Fibrous functionalized silica microspheres. Chemical Engineering Journal, 2020, 385, 123892.	6.6	20
176	Synthesis of ThO ₂ nanostructures through a hydrothermal approach: influence of hexamethylenetetramine (HMTA) and sodium dodecyl sulfate (SDS). RSC Advances, 2014, 4, 52209-52214.	1.7	19
177	Complexation of vanadium with amidoxime and carboxyl groups: uncovering the competitive role of vanadium in uranium extraction from seawater. Radiochimica Acta, 2017, 105, 541-553.	0.5	19
178	Raman and Electrochemical Study of Zirconium in LiCl-KCl-LiF-ZrCl ₄ . Journal of the Electrochemical Society, 2018, 165, D6-D12.	1.3	19
179	A particularly simple NH4Cl-based method for the dissolution of UO2 and rare earth oxides in LiCl-KCl melt under air atmosphere. Journal of Nuclear Materials, 2018, 508, 63-73.	1.3	19
180	Confirmation and elimination of cyclic electrolysis of uranium ions in molten salts. Electrochemistry Communications, 2019, 103, 55-60.	2.3	19

#	Article	IF	Citations
181	<i>In situ</i> nitroso formation induced structural diversity of uranyl coordination polymers. Inorganic Chemistry Frontiers, 2019, 6, 775-785.	3.0	19
182	Robust covalent organic frameworks with tailor-made chelating sites for synergistic capture of U(<scp>vi</scp>) ions from highly acidic radioactive waste. Dalton Transactions, 2021, 50, 3792-3796.	1.6	19
183	Electroseparation of uranium from lanthanides (La, Ce, Pr, Nd and Sm) on liquid gallium electrode. Separation and Purification Technology, 2021, 265, 118524.	3.9	19
184	Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization. Nature Communications, 2022, 13, 2030.	5.8	19
185	Selective separation of Am(III) from Eu(III) by 2,9-Bis(dialkyl-1,2,4-triazin-3-yl)-1,10-phenanthrolines: a relativistic quantum chemistry study. Radiochimica Acta, 2014, 102, 875-886.	0.5	18
186	Interactions between uranium(<scp>vi</scp>) and phosphopeptide: experimental and theoretical investigations. Dalton Transactions, 2016, 45, 14988-14997.	1.6	18
187	Two Three-Dimensional Actinide-Silver Heterometallic Coordination Polymers Based on 2,2′-Bipyridine-3,3′-dicarboxylic Acid with Helical Chains Containing Dimeric or Trimeric Motifs. European Journal of Inorganic Chemistry, 2017, 2017, 1472-1477.	1.0	18
188	Uranyl-Organic Coordination Compounds Incorporating Photoactive Vinylpyridine Moieties: Synthesis, Structural Characterization, and Light-Induced Fluorescence Attenuation. Inorganic Chemistry, 2018, 57, 14772-14785.	1.9	18
189	Electrochemical behavior of Th(IV) on the bismuth electrode in LiCl–KCl eutectic. Journal of Nuclear Materials, 2019, 523, 268-275.	1.3	18
190	Complexation of trivalent lanthanides and actinides with diethylenetriaminepentaacetic acid: Theoretical unraveling of bond covalency. Journal of Molecular Liquids, 2020, 299, 112174.	2.3	18
191	Kinetic Properties and Electrochemical Separation of Uranium on Liquid Bismuth Electrode in LiCl–KCl Melt. Journal of the Electrochemical Society, 2021, 168, 032503.	1.3	18
192	An Azobenzene-Modified Photoresponsive Thorium–Organic Framework: Monitoring and Quantitative Analysis of Reversible <i>trans–cis</i> Photoisomerization. Inorganic Chemistry, 2021, 60, 8519-8529.	1.9	18
193	Theoretical Insights into the Selective Separation of Am(III)/Eu(III) Using Hydrophilic Triazolyl-Based Ligands. Inorganic Chemistry, 2022, 61, 6110-6119.	1.9	18
194	A density functional theory study of complex species and reactions of Am(III)/Eu(III) with nitrate anions. Molecular Simulation, 2014, 40, 379-386.	0.9	17
195	Adsorption and dissociation of H ₂ O on the (001) surface of uranium mononitride: energetics and mechanism from first-principles investigation. Physical Chemistry Chemical Physics, 2016, 18, 13255-13266.	1.3	17
196	First three-dimensional actinide polyrotaxane framework mediated by windmill-like six-connected oligomeric uranyl: dual roles of the pseudorotaxane precursor. Dalton Transactions, 2016, 45, 13304-13307.	1.6	17
197	Condition dependence of Zr electrochemical reactions and morphological evolution of Zr deposits in molten salt. Science China Chemistry, 2017, 60, 264-274.	4.2	17
198	The Application of Low-Melting LiCl-KCl-CsCl Eutectic to Electrodeposit Uranium Metal. Journal of the Electrochemical Society, 2019, 166, D606-D616.	1.3	17

#	Article	IF	Citations
199	Selective Separation and Coordination of Europium(III) and Americium(III) by Bisdiglycolamide Ligands: Solvent Extraction, Spectroscopy, and DFT Calculations. Inorganic Chemistry, 2020, 59, 14218-14228.	1.9	17
200	Construction of Hybrid Bimetallic Uranyl Compounds Based on a Preassembled Terpyridine Metalloligand. Chemistry - A European Journal, 2021, 27, 2124-2130.	1.7	17
201	Substituent Effect on the Selective Separation and Complexation of Trivalent Americium and Lanthanides by N,O-Hybrid 2,9-Diamide-1,10-phenanthroline Ligands in Ionic Liquid. Inorganic Chemistry, 2021, 60, 5131-5139.	1.9	17
202	Selective separation between UO22+ and Pu4+ by novel tetradentate chelate phenanthroline diamide ligand in 1-octanol. Separation and Purification Technology, 2021, 277, 119521.	3.9	17
203	Two novel uranyl complexes of a semi-rigid aromatic tetracarboxylic acid supported by an organic base as an auxiliary ligand or a templating agent: an experimental and theoretical exploration. CrystEngComm, 2015, 17, 3031-3040.	1.3	16
204	Surface properties of NpO 2 and water reacting with stoichiometric and reduced NpO 2 (111), (110), and (100) surfaces from ab initio atomistic thermodynamics. Surface Science, 2016, 644, 153-164.	0.8	16
205	Temperature-induced reversible single-crystal-to-single-crystal isomerisation of uranyl polyrotaxanes: an exquisite case of coordination variability of the uranyl center. Dalton Transactions, 2017, 46, 7392-7396.	1.6	16
206	Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives. Radiochimica Acta, 2019, 107, 951-964.	0.5	16
207	Radiationâ€Induced Selfâ€Assembly of Ti ₃ C ₂ T <i>>_x</i> with Improved Electrochemical Performance for Supercapacitor. Advanced Materials Interfaces, 2020, 7, 1901839.	1.9	16
208	Competitive Coordination of Chloride and Fluoride Anions Towards Trivalent Lanthanide Cations (La ³⁺ and Nd ³⁺) in Molten Salts. Chemistry - A European Journal, 2021, 27, 11721-11729.	1.7	16
209	The influence of Fâ^' ion on the electrochemical behavior and coordination properties of uranium in LiCl-KCl molten salt. Electrochimica Acta, 2022, 404, 139573.	2.6	16
210	Encapsulation of Polymetallic Oxygen Clusters in a Mesoporous/Microporous Thorium-Based Porphyrin Metal–Organic Framework for Enhanced Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2022, 61, 3368-3373.	1.9	16
211	Two tetravalent uranium silicate and germanate crystals with three membered single-ring by molten salt method: K2USi3O9 and Cs2UGe3O9. Chinese Chemical Letters, 2022, 33, 3527-3530.	4.8	16
212	High selectivity towards small copper ions by a preorganized phenanthroline-derived tetradentate ligand and new insight into the complexation mechanism. Dalton Transactions, 2014, 43, 12470-12473.	1.6	15
213	Adsorption behavior of actinides and some typical fission products by silica/polymer-based isoHex-BTP adsorbent from nitric acid solution. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 681-691.	0.7	15
214	Theoretical insight into the binding affinity enhancement of serine with the uranyl ion through phosphorylation. RSC Advances, 2016, 6, 69773-69781.	1.7	15
215	An Unprecedented Twoâ€Fold Nested Superâ€Polyrotaxane: Sulfateâ€Directed Hierarchical Polythreading Assembly of Uranyl Polyrotaxane Moieties. Chemistry - A European Journal, 2016, 22, 11329-11338.	1.7	15
216	Direct Electrochemical Preparation of Ni-Zr Alloy from Mixture Oxides in LiCl Molten Salt. Journal of the Electrochemical Society, 2017, 164, D888-D894.	1.3	15

#	Article	IF	Citations
217	Uranium Dendritic Morphology in the Electrorefining: Influences of Temperature and Current Density. Journal of the Electrochemical Society, 2018, 165, D98-D106.	1.3	15
218	Preparation of \hat{I}^3 -Uranium-Molybdenum Alloys by Electrochemical Reduction of Solid Oxides in LiCl Molten Salt. Journal of the Electrochemical Society, 2019, 166, D276-D282.	1.3	15
219	Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. Chinese Journal of Chemistry, 2021, 39, 2125-2131.	2.6	15
220	Hierarchical and self-supporting honeycomb LaNi5 alloy on nickel foam for overall water splitting in alkaline media. Green Energy and Environment, 2022, 7, 799-806.	4.7	15
221	Recent Advances in MOFâ€Based Materials for Photocatalytic Nitrogen Fixation. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	15
222	Theoretical Probing of Size-Selective Crown Ether Macrocycle Ligands for Transplutonium Element Separation. Inorganic Chemistry, 2022, 61, 4404-4413.	1.9	15
223	Growth of Uranyl Hydroxide Nanowires and Nanotubes by the Electrodeposition Method and Their Transformation to One-Dimensional U3O8Nanostructures. European Journal of Inorganic Chemistry, 2014, 2014, 1158-1164.	1.0	14
224	Theoretical Investigation on Incorporation and Diffusion Properties of Xe in Uranium Mononitride. Journal of Physical Chemistry C, 2015, 119, 5783-5789.	1.5	14
225	The isotopic effects of ¹³ C-labeled large carbon cage (C ₇₀) fullerenes and their formation process. RSC Advances, 2015, 5, 76949-76956.	1.7	14
226	Uranium chemical species in LiCl-KCl eutectic under different conditions for the dissolution of U3O8. Journal of Nuclear Materials, 2020, 542, 152475.	1.3	14
227	Theoretical Insights into Transplutonium Element Separation with Electronically Modulated Phenanthroline-Derived Bis-Triazine Ligands. Inorganic Chemistry, 2021, 60, 10267-10279.	1.9	14
228	The dendrite growth, morphology control and deposition properties of uranium electrorefining. Journal of Nuclear Materials, 2021, 555, 153110.	1.3	14
229	Electrochemical extraction kinetics of Nd on reactive electrodes. Separation and Purification Technology, 2022, 281, 119853.	3.9	14
230	Interactions between U(VI) and bovine serum albumin. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 903-908.	0.7	13
231	Design criteria for tetradentate phenanthroline-derived heterocyclic ligands to separate Am(III) from Eu(III). Science China Chemistry, 2014, 57, 1439-1448.	4.2	13
232	Electronic structures and bonding of the actinide halides An(TRENTIPS)X (An = Th–Pu; X = F–I): a theoretical perspective. Dalton Transactions, 2020, 49, 15895-15902.	1.6	13
233	Rational Design of a Tripodal Ligand for U(IV): Synthesis and Characterization of a U–Cl Species and Insights into Its Reactivity. Organometallics, 2020, 39, 4069-4077.	1.1	13
234	Electrodeposition Mechanism of La ³⁺ on Al, Ga and Al-Ga Alloy Cathodes in LiCl-KCl Eutectic Salt. Journal of the Electrochemical Society, 2021, 168, 062511.	1.3	13

#	Article	IF	Citations
235	Enhancing the Am ³⁺ /Cm ³⁺ separation ability by weakening the binding affinity of N donor atoms: a comparative theoretical study of N, O combined extractants. Dalton Transactions, 2021, 50, 3559-3567.	1.6	13
236	Theoretical Insights into the Separation of Am(III)/Eu(III) by Hydrophilic Sulfonated Ligands. Inorganic Chemistry, 2021, 60, 16409-16419.	1.9	13
237	Tyrosine phosphorylation/dephosphorylation regulates peroxynitrite-mediated peptide nitration. Regulatory Peptides, 2007, 144, 1-5.	1.9	12
238	Metalâ€Carboxyl Helical Chain Secondary Units Supported Ionâ€Exchangeable Anionic Uranyl–Organic Framework. Chemistry - A European Journal, 2019, 25, 10309-10313.	1.7	12
239	Coordination behavior of uranyl with PDAM derivatives in solution: Combined study with ESI-MS and DFT. Journal of Molecular Liquids, 2020, 300, 112287.	2.3	12
240	Kinked-Helix Actinide Polyrotaxanes from Weakly Bound Pseudorotaxane Linkers with Variable Conformations. Inorganic Chemistry, 2020, 59, 4058-4067.	1.9	12
241	Double-Layer Nitrogen-Rich Two-Dimensional Anionic Uranyl–Organic Framework for Cation Dye Capture and Catalytic Fixation of Carbon Dioxide. Inorganic Chemistry, 2021, 60, 11485-11495.	1.9	12
242	First-Principles Study of Barium and Zirconium Stability in Uranium Mononitride Nuclear Fuels. Journal of Physical Chemistry C, 2014, 118, 14579-14585.	1.5	11
243	Influence of complexing species on the extraction of trivalent actinides from lanthanides with CyMe4–BTBP: a theoretical study. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1453-1463.	0.7	11
244	Theoretical insights on the complexation of Am(III) and Cm(III) with amide-type ligands. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 993-1002.	0.7	11
245	Theoretical study on stability, mechanical and thermodynamic properties of (Pu, Zr)N. Journal of Nuclear Materials, 2019, 516, 264-270.	1.3	11
246	Thermodynamic properties of praseodymium on the liquid cadmium electrode and evaluation of anodic dissolution behavior in LiCl-KCl eutectic. Journal of Nuclear Materials, 2019, 523, 16-25.	1.3	11
247	Quantum chemical studies of selective back-extraction of Am(III) from Eu(III) and Cm(III) with two hydrophilic 1,10-phenanthroline-2,9-bis-triazolyl ligands. Radiochimica Acta, 2020, 108, 517-526.	0.5	11
248	A simple and effective separation of UO2 and Ln2O3 assisted by NH4Cl in LiCl–KCl eutectic. Journal of Nuclear Materials, 2020, 532, 152049.	1.3	11
249	Theoretical insights into the substitution effect of phenanthroline derivative ligands on the extraction of Mo (VI). Separation and Purification Technology, 2022, 280, 119817.	3.9	11
250	Theoretical Insights on Improving Amidoxime Selectivity for Potential Uranium Extraction from Seawater. Journal of Physical Chemistry A, 2022, 126, 406-415.	1,1	11
251	The redox mechanism of Np ^{VI} with hydrazine: a DFT study. RSC Advances, 2016, 6, 109045-109053.	1.7	10
252	Supramolecular Isomers of Coordinationâ€Directed Sideâ€Chain Polypseudorotaxanes Based on Trimeric Uranyl Oxalate Nodes. Chemistry - A European Journal, 2017, 23, 8380-8384.	1.7	10

#	Article	IF	Citations
253	Theoretical investigation on electronic and mechanical properties of ternary actinide (U, Np, Pu) nitrides. Journal of Applied Physics, 2017, 122, 115109.	1.1	10
254	Template-Driven Assembly of Rare Hexameric Uranyl-Organic Rotaxane Networks Threaded on Dimeric Uranyl Chains. Crystal Growth and Design, 2018, 18, 3073-3081.	1.4	10
255	Highly delocalized endohedral metal in $Gd@C2v(9)$ -C82 metallofullerenes co-crystallized with $\hat{l}\pm$ -S8. Nano Research, 2018, 11, 2277-2284.	5.8	10
256	A Theoretical Study on Divalent Heavier Group 14 Complexes as Promising Donor Ligands for Building Uranium–Metal Bonds. Organometallics, 2019, 38, 1963-1972.	1.1	10
257	Temperatureâ€Triggered Structural Dynamics of Nonâ€Coordinating Guest Moieties in a Fluorescent Actinide Polyrotaxane Framework. Chemistry - A European Journal, 2021, 27, 8730-8736.	1.7	10
258	Nuclear and radiochemistry in China: present status and future perspectives. Radiochimica Acta, 2012, 100, 529-539.	0.5	9
259	Extraction complexes of Pu(IV) with carbamoylmethylphosphine oxide ligands: AÂrelativistic density functional study. Radiochimica Acta, 2014, 102, 77-86.	0.5	9
260	The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 644-652.	1.0	9
261	Electrochemical Deposition of Erbium on a Binary Al-Zn Cathode. Journal of the Electrochemical Society, 2019, 166, D569-D576.	1.3	9
262	Electrochemical Behaviors of Eu (III) on the Liquid Binary Al-Ga Alloy Cathode. Journal of the Electrochemical Society, 2019, 166, D882-D889.	1.3	9
263	A Tetra-amido-Protected Ge ₅ -Spiropentadiene. Journal of the American Chemical Society, 2019, 141, 19252-19256.	6.6	9
264	A New Preorganized Metalloligand Linker for the Construction of Luminescent Coordination Polymers. Crystal Growth and Design, 2020, 20, 6966-6972.	1.4	9
265	Hydrolytically stable foamed HKUST-1@CMC composites realize high-efficient separation of U(VI). IScience, 2021, 24, 102982.	1.9	9
266	Ultrahigh Affinity and Selectivity Nanotraps for Uranium Extraction from Seawater. ACS Central Science, 2021, 7, 1602-1604.	5.3	9
267	Alkalization Intercalation of MXene for Electrochemical Detection of Uranyl Ion. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34, 85.	0.6	9
268	Chemical Species Transformation during the Dissolution Process of U ₃ O ₈ and UO ₃ in the LiCl–KCl–AlCl ₃ Molten Salt. Inorganic Chemistry, 2022, 61, 6519-6529.	1.9	9
269	Two new uranyl fluoride complexes with UVlî€O–alkali (Na, Cs) interactions: Experimental and theoretical studies. CrystEngComm, 2013, 15, 8041.	1.3	8
270	Electrochemical behavior of uranyl in ionic liquid 1-butyl-3-methylimidazolium chloride mixture with water. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 281-288.	0.7	8

#	Article	IF	CITATIONS
271	Electroreduction-based Tb extraction from Tb4O7 on different substrates: understanding Al–Tb alloy formation mechanism in LiCl–KCl melt. RSC Advances, 2015, 5, 69134-69142.	1.7	8
272	Two-Dimensional Inorganic Cationic Network of Thorium Iodate Chloride with Unique Halogen–Halogen Bonds. Inorganic Chemistry, 2016, 55, 8570-8575.	1.9	8
273	Kinetics process of Tb(III)/Tb couple at liquid Zn electrode and thermodynamic properties of Tb-Zn alloys formation. Science China Chemistry, 2017, 60, 813-821.	4.2	8
274	Noncomplexed Cucurbituril-Mediated Structural Evolution of Layered Uranyl Terephthalate Compounds. Inorganic Chemistry, 2020, 59, 943-955.	1.9	8
275	Theoretical probing of twenty-coordinate actinide-centered boron molecular drums. Physical Chemistry Chemical Physics, 2021, 23, 26967-26973.	1.3	8
276	Viologenâ€Based Uranyl Coordination Polymers: Anionâ€Induced Structural Diversity and the Potential as a Fluorescent Probe. European Journal of Inorganic Chemistry, 2021, 2021, 5077-5084.	1.0	8
277	Hierarchical assembly of uranyl metallacycles involving macrocyclic hosts. Chinese Chemical Letters, 2022, 33, 3539-3542.	4.8	8
278	Separation of uranium from lanthanides (La, Sm) with sacrificial Li anode in LiCl-KCl eutectic salt. Separation and Purification Technology, 2022, 292, 121025.	3.9	8
279	Liquid Electrodes for An/Ln Separation in Pyroprocessing. Journal of the Electrochemical Society, 2021, 168, 032507.	1.3	7
280	Stepwise Assembly of a Multicomponent Heterometallic Metal–Organic Framework via Th ₆ -Based Metalloligands. Inorganic Chemistry, 2021, 60, 14535-14539.	1.9	7
281	Temperature-responsive alkaline aqueous biphasic system for radioactive wastewater treatment. Chinese Chemical Letters, 2022, 33, 3561-3564.	4.8	7
282	Pyridine-di-phosphonates as chelators for trivalent f-elements: kinetics, thermodynamic and interfacial study of Am(<scp>iii</scp>)/Eu(<scp>iii</scp>) solvent extraction. Dalton Transactions, 2022, 51, 11180-11192.	1.6	7
283	Synthesis of ordered mesoporous uranium dioxide by a nanocasting route. Radiochimica Acta, 2016, 104, 549-553.	0.5	6
284	\hat{I}^3 -Radiation effect on Th ⁴⁺ extraction behaviour of TODGA/[C ₂ mim][NTf ₂]: identification and extractability study of radiolytic products. RSC Advances, 2016, 6, 7626-7632.	1.7	6
285	First-principles study of water reacting with the (110) surface of uranium mononitride. Journal of Nuclear Materials, 2017, 492, 244-252.	1.3	6
286	Metal-metal multiple bond in low-valent diuranium porphyrazines and its correlation with metal oxidation state: A relativistic DFT study. Computational and Theoretical Chemistry, 2017, 1108, 29-39.	1.1	6
287	Theoretical Study on the Reduction Mechanism of Np(VI) by Hydrazine Derivatives. Journal of Physical Chemistry A, 2020, 124, 3720-3729.	1.1	6
288	Proximity Effect in Uranyl Coordination of the Cucurbit[6]uril-Bipyridinium Pseudorotaxane Ligand for Promoting Host–Guest Synergistic Chelating. Inorganic Chemistry, 2021, 60, 10522-10534.	1.9	6

#	Article	IF	Citations
289	Theoretical insights into selective extraction of uranium from seawater with tetradentate N,O-mixed donor ligands. Dalton Transactions, 2022, 51, 11381-11389.	1.6	6
290	The Coordination Chemistry of fâ€Block Elements in Molten Salts. Chemistry - A European Journal, 2022, 28, .	1.7	6
291	Development of an Experimental Prototype Multi-Modal Netted Sensor Fence for Homeland Defense and Border Integrity. , 2007, , .		5
292	An Innovative method to determine multi-system performance for the detection of clandestine tunnels. , 2012, , .		5
293	Evaluation study on a macroporous silica-based <i>iso</i> hexyl-BTP adsorbent for minor actinides separation from nitric acid medium. Radiochimica Acta, 2014, 102, 93-100.	0.5	5
294	Estimation of the composition of intermetallic compounds in LiCl–KCl molten salt by cyclic voltammetry. Faraday Discussions, 2016, 190, 387-398.	1.6	5
295	U(VI) Extraction by 8-hydroxyquinoline: a comparison study in ionic liquid and in dichloromethane. Radiochimica Acta, 2017, 105, 441-448.	0.5	5
296	An Insight into Adaptive Deformation of Rigid Cucurbit [6] uril Host in Symmetric [2] Pseudorotaxanes. European Journal of Organic Chemistry, 2018, 2018, 4426-4430.	1.2	5
297	New formulation for reduction potentials of (Cu, Ni, Al, Zn)–lanthanide alloys – Implications for electrolysis-based pyroprocessing of spent nuclear fuel. Electrochemistry Communications, 2018, 93, 180-182.	2.3	5
298	Uranyl-catalyzed hydrosilylation of <i>para</i> -quinone methides: access to diarylmethane derivatives. Organic and Biomolecular Chemistry, 2021, 19, 1575-1579.	1.5	5
299	Theoretical Insights into the Actinide–Silicon Bonding Nature and Stability of a Series of Actinide Complexes with Different Oxidation States. Organometallics, 2021, 40, 1719-1727.	1.1	5
300	Theoretical Insights into the Reduction Mechanism of Np(VI) with Phenylhydrazine. Journal of Physical Chemistry A, 2021, 125, 6180-6188.	1.1	5
301	High-Temperature Synthesis of a Uranyl Peroxo Complex Facilitated by Hydrothermally In Situ Formed Organic Peroxide. Inorganic Chemistry, 2021, 60, 2133-2137.	1.9	5
302	Theoretical insights into the possible applications of amidoxime-based adsorbents in neptunium and plutonium separation. Dalton Transactions, 2021, 50, 15576-15584.	1.6	5
303	Coordination-Adaptive Polydentate Pseudorotaxane Ligand for Capturing Multiple Uranyl Species. Inorganic Chemistry, 2022, , .	1.9	5
304	Theoretical study on the extraction behaviors of MoO22+ with organophosphorous extractants. Journal of Molecular Liquids, 2022, 355, 118969.	2.3	5
305	<title>Multi-modal netted sensor fence for homeland security</title> .,2005,,.		4
306	Identification of radiation-induced cross-linking between thymine and tryptophan by electrospray ionization-mass spectrometry. Journal of Mass Spectrometry, 2006, 41, 1205-1211.	0.7	4

#	Article	IF	CITATIONS
307	Hydroxylation of 3-Nitrotyrosine and Its Derivatives by Gamma Irradiation. Radiation Research, 2006, 166, 639-645.	0.7	4
308	Experimental and theoretical investigations on the tautomerism of 1-phenyl-2-thiobarbituric acid and its methylation reaction. Journal of Molecular Structure, 2013, 1036, 372-379.	1.8	4
309	Synthesis and crystal structures of two new uranyl coordination compounds obtained in aqueous solutions of 1-butyl-2,3-dimethylimidazolium chloride. Journal of Coordination Chemistry, 2018, 71, 2415-2425.	0.8	4
310	Adsorption of CH3I on Ag(1â€1â€1) and Ag2O(1â€1â€1) surface: A density functional theory study. Chemical Physics, 2018, 513, 35-40.	0.9	4
311	Molecular Springâ€ike Tripleâ€Helix Coordination Polymers as Dualâ€6tress and Thermally Responsive Crystalline Metal–Organic Materials. Angewandte Chemie, 2020, 132, 16195-16202.	1.6	4
312	Theoretical prediction of chiral actinide endohedral borospherenes. New Journal of Chemistry, 2021, 45, 6803-6810.	1.4	4
313	Induced Polarization Imaging of a Jet Fuel Plume. , 1999, , .		4
314	Thorium(IV) adsorption onto multilayered Ti ₃ C ₂ T _x MXene: a batch, X-ray diffraction and EXAFS combined study. Journal of Synchrotron Radiation, 2021, 28, 1709-1719.	1.0	4
315	Hydroxylation of 3-nitrotyrosine by hydroxyl radical. Chinese Chemical Letters, 2007, 18, 542-544.	4.8	3
316	Nitration Activates Tyrosine toward Reaction with the Hydrated Electron. Radiation Research, 2011, 176, 128-133.	0.7	3
317	Synthesis of ordered mesoporous U ₃ O ₈ by a nanocasting route. Radiochimica Acta, 2014, 102, 813-816.	0.5	3
318	Theoretical investigation on the solution behaviors of Ba and Zr in uranium dinitride. Science China Chemistry, 2015, 58, 1891-1897.	4.2	3
319	In situ X-ray absorption fine structure study on the polymerization of isoprene assisted by Nd-based ternary catalysts. RSC Advances, 2017, 7, 14413-14421.	1.7	3
320	Interactions of phosphorylated cyclohexapeptides with uranyl: insights from experiments and theoretical calculations. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 677-689.	0.7	3
321	Modification of a Carbon Nanobelt with Actinides Th–Am: A Density Functional Theory Study. Journal of Physical Chemistry A, 2019, 123, 4900-4907.	1.1	3
322	Controlling the secondary assembly of porous anionic uranyl–organic polyhedra through organic cationic templates. Dalton Transactions, 2021, 50, 4499-4503.	1.6	3
323	Structures and Uranium-Uranium Multiple Bond of Binuclear Divalent Uranium Complex of Pyrrolic Schiff-base Macrocycle: a Relativistic DFT Probe. Acta Chimica Sinica, 2017, 75, 457.	0.5	3
324	Construction of the Largest Metal-Centered Double-Ring Tubular Boron Clusters Based on Actinide Metal Doping. Journal of Physical Chemistry A, O, , .	1.1	3

#	Article	IF	Citations
325	Electrochemical Behaviour and Chemical Species of Sm(II) in AlCl ₃ â€NaCl with Different Lewis Acidity. Chemistry - A European Journal, 2022, 28, .	1.7	3
326	Reduction of Np($\langle scp \rangle vi \langle scp \rangle$) with hydrazinopropionitrile $\langle i \rangle via \langle i \rangle$ water-mediated proton transfer. Physical Chemistry Chemical Physics, 0, , .	1.3	3
327	Machine-Learning-Guided Identification of Coordination Polymer Ligands for Crystallizing Separation of Cs/Sr. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33076-33084.	4.0	3
328	A theoretical study on geometry, bonding nature, and stability of several anhydrous and hydrated In(III), Gd(III) and Yb(III) complexes in liquid scintillator solvents. Inorganica Chimica Acta, 2017, 463, 20-28.	1.2	2
329	Coordination-driven assembly of actinide-organic polyrotaxanes involving crown ether macrocycles. Organic Chemistry Frontiers, 2021, 8, 3686-3694.	2.3	2
330	Adsorption of Radioiodine on Cu ₂ O Surfaces: a First-Principles Density Functional Study. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 2264-2270.	2.2	2
331	Recent Progress on Chemical Species of Uranium in Molten Chlorides. Acta Chimica Sinica, 2021, 79, 1425.	0.5	2
332	Carbone Derivatives of Group 14: A Class of Important Reactive Intermediates. Acta Chimica Sinica, 2022, 80, 373.	0.5	2
333	Mixed-Ligand Uranyl Squarate Coordination Polymers: Structure Regulation and Redox Activity. Inorganic Chemistry, 2022, 61, 302-316.	1.9	2
334	Modular Assembly of Isostructural Mixed-Ligand Uranyl Coordination Polymers Based on a Patterning Strategy. Inorganic Chemistry, 2022, 61, 10694-10704.	1.9	2
335	Protective role of 3-nitrotyrosine against gamma radiation-induced DNA strand breaks: A comparison study with tyrosine. Radiation Physics and Chemistry, 2008, 77, 1290-1293.	1.4	1
336	Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands. Radiochimica Acta, 2017, 105, 21-32.	0.5	1
337	Complexation of U(VI) with diphenyldithiophosphinic acid: spectroscopy, structure and DFT calculations. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 121-129.	0.7	1
338	Adsorption of Eu(III) on Alkalized Ti3C2Tx MXene Studied by Batch Experiment and Mechanism Investigation. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, , 53.	0.6	1
339	Highly stable actinide(III) complexes supported by doubly aromatic ligands. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
340	Molecular Dynamics Simulations of Metal Electrode/Molten LiCl-KCl-UCl ₃ Mixtures Interface. Journal of the Electrochemical Society, 2022, 169, 032503.	1.3	1
341	A novel CPE procedure by oil-in-water microemulsion for preconcentrating andÂanalyzing thorium and uranium. Radiochimica Acta, 2022, 110, 239-249.	0.5	1
342	Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives. Radiochimica Acta, 2022, 110, 471-480.	0.5	1

#	Article	IF	CITATIONS
343	Geophysical and Operational System Performance Tool for the detection of clandestine tunnels: Enhancement and case studies. , 2013, , .		0
344	Two-dimensional transition metal carbide/nitride (MXene)-based nanomaterials for removal of toxic/radioactive metal ions from wastewater. , 2022, , $161-194$.		0
345	Professor Zhifang Chai: Scientific Contributions and Achievements. Chinese Chemical Letters, 2022, , .	4.8	0
346	A Theoretical Study of Unsupported Uranium–Ruthenium Bonds Based on Tripodal Ligands. Organometallics, 2022, 41, 1304-1313.	1.1	0
347	Theoretical Studies on the Interaction of Uranyl with Carboxylic Acids and Oxime Ligands. Acta Chimica Sinica, 2022, 80, 708.	0.5	0