
Youwen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2360686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Overpotential in Vacancy-Rich Ultrathin CoSe ₂ Nanosheets for Water Oxidation. Journal of the American Chemical Society, 2014, 136, 15670-15675.	13.7	970
2	Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 5087-5092.	13.7	351
3	Ultrathin Co ₃ S ₄ Nanosheets that Synergistically Engineer Spin States and Exposed Polyhedra that Promote Water Oxidation under Neutral Conditions. Angewandte Chemie - International Edition, 2015, 54, 11231-11235.	13.8	283
4	Local Charge Distribution Engineered by Schottky Heterojunctions toward Urea Electrolysis. Advanced Energy Materials, 2018, 8, 1801775.	19.5	266
5	Regulating the Charge and Spin Ordering of Two-Dimensional Ultrathin Solids for Electrocatalytic Water Splitting. CheM, 2018, 4, 1263-1283.	11.7	219
6	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie - International Edition, 2019, 58, 731-735.	13.8	202
7	Vacancy Engineering for Tuning Electron and Phonon Structures of Twoâ€Dimensional Materials. Advanced Energy Materials, 2016, 6, 1600436.	19.5	198
8	Schottky Heterojunction Nanosheet Array Achieving Highâ€Currentâ€Density Oxygen Evolution for Industrial Water Splitting Electrolyzers. Advanced Energy Materials, 2021, 11, 2102353.	19.5	177
9	Local Electric Field Facilitates High-Performance Li-Ion Batteries. ACS Nano, 2017, 11, 8519-8526.	14.6	155
10	Promoting Photogenerated Holes Utilization in Poreâ€Rich WO ₃ Ultrathin Nanosheets for Efficient Oxygenâ€Evolving Photoanode. Advanced Energy Materials, 2016, 6, 1600437.	19.5	150
11	Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electroâ€oxidation. Advanced Materials, 2019, 31, e1900528.	21.0	111
12	Vacancyâ€Rich Ni(OH) ₂ Drives the Electrooxidation of Amino Câ^'N Bonds to Nitrile C≡N Bonds. Angewandte Chemie - International Edition, 2020, 59, 16974-16981.	13.8	91
13	Magnetic ions in wide band gap semiconductor nanocrystals for optimized thermoelectric properties. Materials Horizons, 2014, 1, 81-86.	12.2	87
14	2D CoOOH Sheet-Encapsulated Ni2P into Tubular Arrays Realizing 1000ÂmAÂcmâ^'2-Level-Current-Density Hydrogen Evolution Over 100Âh in Neutral Water. Nano-Micro Letters, 2020, 12, 140.	27.0	83
15	Two-Dimensional Transition Metal Oxide and Hydroxide-Based Hierarchical Architectures for Advanced Supercapacitor Materials. Frontiers in Chemistry, 2020, 8, 390.	3.6	74
16	Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nature Communications, 2022, 13, 2039.	12.8	69
17	On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chemical Society Reviews, 2020, 49, 2916-2936.	38.1	68
18	In Situ Phase Separation into Coupled Interfaces for Promoting CO ₂ Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie - International Edition, 2021, 60, 22940-22947.	13.8	67

YOUWEN LIU

#	Article	IF	CITATIONS
19	In Situ Halogenâ€ion Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO ₂ Electroreduction to C ₂₊ Products. Angewandte Chemie - International Edition, 2022, 61, .	13.8	67
20	1T′-MoTe ₂ -Based On-Chip Electrocatalytic Microdevice: A Platform to Unravel Oxidation-Dependent Electrocatalysis. CCS Chemistry, 2019, 1, 396-406.	7.8	55
21	Ultrahighâ€Currentâ€Density and Longâ€Termâ€Durability Electrocatalysts for Water Splitting. Small, 2022, 18, e2104513.	10.0	49
22	Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition. Journal of the American Chemical Society, 2015, 137, 15043-15048.	13.7	43
23	2D Hybrid Superlattice-Based On-Chip Electrocatalytic Microdevice for <i>in Situ</i> Revealing Enhanced Catalytic Activity. ACS Nano, 2020, 14, 1635-1644.	14.6	36
24	Dualâ€Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	35
25	Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Research, 2022, 15, 872-880.	10.4	31
26	<i>In Situ</i> Chalcogen Leaching Manipulates Reactant Interface toward Efficient Amine Electrooxidation. ACS Nano, 2022, 16, 9572-9582.	14.6	31
27	Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Research, 2021, 14, 4814-4821.	10.4	27
28	Proximity Enhanced Hydrogen Evolution Reactivity of Substitutional Doped Monolayer WS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 19406-19413.	8.0	24
29	Homologous NiCoP@NiFeP heterojunction array achieving high-current hydrogen evolution for alkaline anion exchange membrane electrolyzers. Journal of Materials Chemistry A, 2022, 10, 10209-10218.	10.3	24
30	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger Nâ‰iN Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie, 2019, 131, 741-745.	2.0	21
31	Vacancyâ€Rich Ni(OH) ₂ Drives the Electrooxidation of Amino Câ^'N Bonds to Nitrile C≡N Bonds. Angewandte Chemie, 2020, 132, 17122-17129.	2.0	21
32	Backâ€Gated van der Waals Heterojunction Manipulates Local Charges toward Fineâ€Tuning Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
33	Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides. Chemical Engineering Journal, 2022, 430, 132699.	12.7	16
34	Structural Reconstruction of Catalysts in Electroreduction Reaction: Identifying, Understanding, and Manipulating. Advanced Materials, 2022, 34, e2110699.	21.0	16
35	Single WTe ₂ Sheet-Based Electrocatalytic Microdevice for Directly Detecting Enhanced Activity of Doped Electronegative Anions. ACS Applied Materials & Interfaces, 2021, 13, 14302-14311.	8.0	15
36	Superior Nonlinear Optical Response in Nonâ€Centrosymmetric Stacking Edgeâ€Rich Spiral MoTe ₂ Nanopyramids. Advanced Functional Materials, 2022, 32, .	14.9	14

YOUWEN LIU

#	Article	IF	CITATIONS
37	In Situ Phase Separation into Coupled Interfaces for Promoting CO ₂ Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie, 2021, 133, 23122-23129.	2.0	11
38	In Situ Halogenâ€lon Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO ₂ Electroreduction to C ₂₊ Products. Angewandte Chemie, 2022, 134, .	2.0	9
39	Backâ€Gated van der Waals Heterojunction Manipulates Local Charges toward Fineâ€Tuning Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	8
40	Engineering a Local Free Water Enriched Microenvironment for Surpassing Platinum Hydrogen Evolution Activity. Angewandte Chemie, 2022, 134, .	2.0	8
41	Research Progress of Surface and Interface Chemistry Regulate Two-dimensional Materials for Electrocatalytic Biomass Conversion. Acta Chimica Sinica, 2020, 78, 1185.	1.4	7
42	<i>In situ</i> epitaxial growth of Ag ₃ PO ₄ quantum dots on hematite nanotubes for high photocatalytic activities. Inorganic Chemistry Frontiers, 2019, 6, 2747-2755.	6.0	6
43	Dualâ€Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	4