David Mathew Tarlinton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2360307/publications.pdf

Version: 2024-02-01

69 papers 8,898 citations

35 h-index 95218 68 g-index

88 all docs 88 docs citations

88 times ranked 11927 citing authors

#	Article	IF	CITATIONS
1	Targeting BMI-1 in B cells restores effective humoral immune responses and controls chronic viral infection. Nature Immunology, 2022, 23, 86-98.	7.0	17
2	Electroclinical biomarkers of autoimmune encephalitis. Epilepsy and Behavior, 2022, 128, 108571.	0.9	2
3	<scp>IL</scp> â $€21$ has a critical role in establishing germinal centers by amplifying early B cell proliferation. EMBO Reports, 2022, 23, .	2.0	16
4	B cell memory: understanding COVID-19. Immunity, 2021, 54, 205-210.	6.6	102
5	Complement-in' the germinal center response. Nature Immunology, 2021, 22, 673-674.	7.0	O
6	The ASCIZ-DYNLL1 Axis Is Essential for TLR4-Mediated Antibody Responses and NF- $\langle i \rangle \hat{I}^2 \langle i \rangle$ B Pathway Activation. Molecular and Cellular Biology, 2021, 41, e0025121.	1.1	3
7	The concerted change in the distribution of cell cycle phases and zone composition in germinal centers is regulated by IL-21. Nature Communications, 2021, 12, 7160.	5.8	19
8	Display of Native Antigen on cDC1 That Have Spatial Access to Both T and B Cells Underlies Efficient Humoral Vaccination. Journal of Immunology, 2020, 205, 1842-1856.	0.4	20
9	Do plasma cells contribute to the determination of their lifespan?. Immunology and Cell Biology, 2020, 98, 449-455.	1.0	8
10	Seizures in autoimmune encephalitis: Kindling the fire. Epilepsia, 2020, 61, 1033-1044.	2.6	13
11	An Erg-driven transcriptional program controls B cell lymphopoiesis. Nature Communications, 2020, 11, 3013.	5.8	29
12	How intrinsic and extrinsic regulators of plasma cell survival might intersect for durable humoral immunity. Immunological Reviews, 2020, 296, 87-103.	2.8	39
13	Hhex regulates murine lymphoid progenitor survival independently of Stat5 and Cdkn2a. European Journal of Immunology, 2020, 50, 959-971.	1.6	13
14	The Amount of BCL6 in B Cells Shortly after Antigen Engagement Determines Their Representation in Subsequent Germinal Centers. Cell Reports, 2020, 30, 1530-1541.e4.	2.9	32
15	Lymph node stromal CCL2 limits antibody responses. Science Immunology, 2020, 5, .	5.6	30
16	BAFF, ILâ€4 and ILâ€21 separably program germinal centerâ€like phenotype acquisition, BCL6 expression, proliferation and survival of CD40Lâ€activated B cells <i>inÂvitro</i> . Immunology and Cell Biology, 2019, 97, 826-839.	1.0	24
17	Innate Immunity in the Central Nervous System: A Missing Piece of the Autoimmune Encephalitis Puzzle?. Frontiers in Immunology, 2019, 10, 2066.	2.2	53
18	IRF4 Activity Is Required in Established Plasma Cells to Regulate Gene Transcription and Mitochondrial Homeostasis. Cell Reports, 2019, 29, 2634-2645.e5.	2.9	47

#	Article	IF	Citations
19	B cells still front and centre in immunology. Nature Reviews Immunology, 2019, 19, 85-86.	10.6	27
20	Atypical chemokine receptor 4 shapes activated B cell fate. Journal of Experimental Medicine, 2018, 215, 801-813.	4.2	18
21	Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. Journal of Experimental Medicine, 2018, 215, 1227-1243.	4.2	113
22	Lyn, Lupus, and (B) Lymphocytes, a Lesson on the Critical Balance of Kinase Signaling in Immunity. Frontiers in Immunology, 2018, 9, 401.	2.2	34
23	Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner. Frontiers in Immunology, 2018, 9, 592.	2.2	13
24	c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses. Cell Reports, 2017, 19, 461-470.	2.9	53
25	Editorial overview: Germinal centers and memory B-cells: from here to eternity. Current Opinion in Immunology, 2017, 45, v-viii.	2.4	6
26	Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death and Differentiation, 2017, 24, 878-888.	5.0	103
27	The life and death of immune cell types: the role of BCLâ€2 antiâ€apoptotic molecules. Immunology and Cell Biology, 2017, 95, 870-877.	1.0	30
28	IL4 and IL21 cooperate to induce the high Bcl6 protein level required for germinal center formation. Immunology and Cell Biology, 2017, 95, 925-932.	1.0	42
29	HIV Vaccines: One Step Closer. Trends in Molecular Medicine, 2017, 23, 1-3.	3.5	1
30	Dynein light chain regulates adaptive and innate B cell development by distinctive genetic mechanisms. PLoS Genetics, 2017, 13, e1007010.	1.5	33
31	Targeting plasma cells: are we any closer to a panacea for diseases of antibodyâ€secreting cells?. Immunological Reviews, 2016, 270, 78-94.	2.8	10
32	Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. Journal of Experimental Medicine, 2016, 213, 1095-1111.	4.2	53
33	Innate Allorecognition Results in Rapid Accumulation of Monocyte-Derived Dendritic Cells. Journal of Immunology, 2016, 197, 2000-2008.	0.4	22
34	MCL-1 is required throughout B-cell development and its loss sensitizes specific B-cell subsets to inhibition of BCL-2 or BCL-XL. Cell Death and Disease, 2016, 7, e2345-e2345.	2.7	53
35	The Transcription Factor ASCIZ and Its Target DYNLL1 Are Essential for the Development and Expansion of MYC-Driven B Cell Lymphoma. Cell Reports, 2016, 14, 1488-1499.	2.9	36
36	Regulation of germinal center responses, memory B cells and plasma cell formation—an update. Current Opinion in Immunology, 2016, 39, 59-67.	2.4	85

#	Article	IF	Citations
37	Glucocorticoid-induced leucine zipper (GILZ) inhibits B cell activation in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2016, 75, 739-747.	0.5	36
38	The generation of antibody-secreting plasma cells. Nature Reviews Immunology, 2015, 15, 160-171.	10.6	1,034
39	Targeting Antigen to Clec9A Primes Follicular Th Cell Memory Responses Capable of Robust Recall. Journal of Immunology, 2015, 195, 1006-1014.	0.4	65
40	c-Myb is required for plasma cell migration to bone marrow after immunization or infection. Journal of Experimental Medicine, 2015, 212, 1001-1009.	4.2	32
41	Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nature Immunology, 2015, 16, 663-673.	7.0	332
42	The tyrosine kinase Lyn limits the cytokine responsiveness of plasma cells to restrict their accumulation in mice. Science Signaling, 2014, 7, ra77.	1.6	17
43	Fas ligand–mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nature Medicine, 2014, 20, 283-290.	15.2	79
44	The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation. Journal of Experimental Medicine, 2014, 211, 2169-2181.	4.2	126
45	To affinity and beyond. Nature, 2014, 509, 573-574.	13.7	7
46	Diversity Among Memory B Cells: Origin, Consequences, and Utility. Science, 2013, 341, 1205-1211.	6.0	175
47	Mcl-1 is essential for the survival of plasma cells. Nature Immunology, 2013, 14, 290-297.	7.0	273
48	Evolution of B Cell Responses to Clec9A-Targeted Antigen. Journal of Immunology, 2013, 191, 4919-4925.	0.4	28
49	The Zinc-finger protein ASCIZ regulates B cell development via DYNLL1 and Bim. Journal of Experimental Medicine, 2012, 209, 1629-1639.	4.2	35
50	Determining germinal centre B cell fate. Trends in Immunology, 2012, 33, 281-288.	2.9	78
51	The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nature Immunology, 2012, 13, 491-498.	7.0	294
52	B-Cell Differentiation: Instructive One Day, Stochastic the Next. Current Biology, 2012, 22, R235-R237.	1.8	6
53	B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. Journal of Experimental Medicine, 2011, 208, 1377-1388.	4.2	250
54	Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood, 2010, 116, 1867-1875.	0.6	189

#	Article	IF	CITATIONS
55	IL-21 regulates germinal center B cell differentiation and proliferation through a B cell–intrinsic mechanism. Journal of Experimental Medicine, 2010, 207, 365-378.	4.2	661
56	Mcl-1 Is Essential for Germinal Center Formation and B Cell Memory. Science, 2010, 330, 1095-1099.	6.0	196
57	BH3 mimetics antagonizing restricted prosurvival Bcl-2 proteins represent another class of selective immune modulatory drugs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10967-10971.	3.3	97
58	Antigen delivery via two molecules on the CD8- dendritic cell subset induces humoral immunity in the absence of conventional "danger― European Journal of Immunology, 2005, 35, 2815-2825.	1.6	71
59	Early appearance of germinal center–derived memory B cells and plasma cells in blood after primary immunization. Journal of Experimental Medicine, 2005, 201, 545-554.	4.2	238
60	Plasma Cell Ontogeny Defined by Quantitative Changes in Blimp-1 Expression. Journal of Experimental Medicine, 2004, 200, 967-977.	4.2	470
61	Evidence from the generation of immunoglobulin G–secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nature Immunology, 2004, 5, 55-63.	7.0	201
62	Loss of the Pro-Apoptotic BH3-only Bcl-2 Family Member Bim Inhibits BCR Stimulation–induced Apoptosis and Deletion of Autoreactive B Cells. Journal of Experimental Medicine, 2003, 198, 1119-1126.	4.2	267
63	Defective Gp130-Mediated Signal Transducer and Activator of Transcription (Stat) Signaling Results in Degenerative Joint Disease, Gastrointestinal Ulceration, and Failure of Uterine Implantation. Journal of Experimental Medicine, 2001, 194, 189-204.	4.2	214
64	bcl-2 Transgene Expression Inhibits Apoptosis in the Germinal Center and Reveals Differences in the Selection of Memory B Cells and Bone Marrow Antibody-Forming Cells. Journal of Experimental Medicine, 2000, 191, 475-484.	4.2	209
65	Proapoptotic Bcl-2 Relative Bim Required for Certain Apoptotic Responses, Leukocyte Homeostasis, and to Preclude Autoimmunity. Science, 1999, 286, 1735-1738.	6.0	1,386
66	Inhibition of the B Cell by CD22: A Requirement for Lyn. Journal of Experimental Medicine, 1998, 187, 807-811.	4.2	245
67	The phenotype and fate of the antibody-forming cells of the splenic foci. European Journal of Immunology, 1996, 26, 444-448.	1.6	315
68	B1 and B2 cells differ in their potential to switch immunoglobulin isotype. European Journal of Immunology, 1995, 25, 3388-3393.	1.6	43
69	B-Cell Differentiation in the Bone Marrow and the Periphery. Immunological Reviews, 1994, 137, 203-229.	2.8	28