Richard M Bostock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2360206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Walnut twig beetle landing rates differ between host and nonhost hardwood trees under the influence of aggregation pheromone in a northern California riparian forest. Agricultural and Forest Entomology, 2021, 23, 111-120.	0.7	1
2	Analysis of Volatile Profiles for Tracking Asymptomatic Infections of <i>Phytophthora ramorum</i> and Other Pathogens in <i>Rhododendron</i> . Phytopathology, 2021, 111, 1818-1827.	1.1	5
3	The Effect of Applied Salinity and Water Stress on Chemical Suppression of <i>Phytophthora ramorum</i> from Soilborne Inoculum in <i>Rhododendron</i> Plant Disease, 2021, 105, 2929-2937.	0.7	1
4	Assessment of Semiochemical Repellents for Protecting Walnut Trees From Walnut Twig Beetle (Coleoptera: Curculionidae) Attack in a Commercial Orchard Setting in California. Journal of Economic Entomology, 2021, 114, 1180-1188.	0.8	0
5	Eicosapolyenoic fatty acids induce defense responses and resistance to Phytophthora capsici in tomato and pepper. Physiological and Molecular Plant Pathology, 2021, 114, 101642.	1.3	6
6	Genetic Diversity and Potential Inoculum Sources of <i>Fusarium</i> Species Causing Cankers in Bareroot-Propagated Almond Trees in California Nurseries. Plant Disease, 2021, , .	0.7	1
7	An roGFP2-Based Bacterial Bioreporter for Redox Sensing of Plant Surfaces. Phytopathology, 2020, 110, 297-308.	1.1	4
8	Seasonal Variation in Host Susceptibility to Fusarium Canker in Young Almond Trees. Plant Disease, 2020, 104, 772-779.	0.7	8
9	Eicosapolyenoic fatty acids alter oxylipin gene expression and fatty acid hydroperoxide profiles in tomato and pepper roots. Physiological and Molecular Plant Pathology, 2020, 109, 101444.	1.3	7
10	DNA barcoding, phylogeny and phylogeography of the cyst nematode species from the genus Globodera (Tylenchida:ÂHeteroderidae). Nematology, 2020, 22, 269-297.	0.2	20
11	Trap Assays of the Walnut Twig Beetle, Pityophthorus juglandis Blackman (Coleoptera: Curculionidae:) Tj ETQq1 2 2020, 46, 1047-1058.	0.78431 0.9	4 rgBT /Ove 8
12	Trapping Failure Leads to Discovery of Potent Semiochemical Repellent for the Walnut Twig Beetle. Journal of Economic Entomology, 2020, 113, 2772-2784.	0.8	7
13	A study of landing behaviour by the walnut twig beetle, <scp><i>Pityophthorus juglandis</i></scp> , among host and nonhost hardwood trees in a northern California riparian forest. Agricultural and Forest Entomology, 2020, 22, 338-348.	0.7	7
14	Polyketide Synthase Gene Expression in Relation to Chloromonilicin and Melanin Production in Monilinia fructicola. Phytopathology, 2020, 110, 1465-1475.	1.1	6
15	Population genomics demystifies the defoliation phenotype in the plant pathogen <i>Verticillium dahliae</i> . New Phytologist, 2019, 222, 1012-1029.	3.5	41
16	Effects of Phytophthora ramorum on volatile organic compound emissions of Rhododendron using gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410, 1475-1487.	1.9	11
17	Abscisic Acid as a Dominant Signal in Tomato During Salt Stress Predisposition to Phytophthora Root and Crown Rot. Frontiers in Plant Science, 2018, 9, 525.	1.7	19
	Wingnut (Juglandaceae) as a new generic host for <i>Pityophthorus juglandis</i> (Coleoptera:) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 67

18

ic host for<i>Pityophthorus juglandis</i>(Coleoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 0.4 33

#	Article	IF	CITATIONS
19	Coordination of Diagnostic Efforts in the Great Plains: Wheat Virus Survey and Modeling of Disease Onset. Plant Disease, 2016, 100, 1037-1045.	0.7	9
20	Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiological and Molecular Plant Pathology, 2016, 93, 1-11.	1.3	33
21	Nitrogen increases hull rot and interferes with the hull split phenology in almond (Prunus dulcis). Scientia Horticulturae, 2016, 199, 41-48.	1.7	14
22	Expression of Five Endopolygalacturonase Genes and Demonstration that MfPG1 Overexpression Diminishes Virulence in the Brown Rot Pathogen Monilinia fructicola. PLoS ONE, 2015, 10, e0132012.	1.1	19
23	Plant health: How diagnostic networks and interagency partnerships protect plant systems from pests and pathogens. California Agriculture, 2014, 68, 117-124.	0.5	13
24	The National Plant Diagnostic Network: Partnering to Protect Plant Systems. Plant Disease, 2014, 98, 708-715.	0.7	25
25	Predisposition in Plant Disease: Exploiting the Nexus in Abiotic and Biotic Stress Perception and Response. Annual Review of Phytopathology, 2014, 52, 517-549.	3.5	188
26	β-glucans and eicosapolyenoic acids as MAMPs in plantââ,¬â€œoomycete interactions: past and present. Frontiers in Plant Science, 2014, 5, 797.	1.7	38
27	Microclimate Impacts Survival and Prevalence of Phytophthora ramorum in Umbellularia californica, a Key Reservoir Host of Sudden Oak Death in Northern California Forests. PLoS ONE, 2014, 9, e98195.	1.1	19
28	Fatty acids and early detection of pathogens. Current Opinion in Plant Biology, 2013, 16, 520-526.	3.5	137
29	<i>Fusarium</i> spp., <i>Cylindrocarpon</i> spp., and Environmental Stress in the Etiology of a Canker Disease of Cold-Stored Fruit and Nut Tree Seedlings in California. Plant Disease, 2013, 97, 259-270.	0.7	22
30	Susceptibility of Walnut and Hickory Species to <i>Geosmithia morbida</i> . Plant Disease, 2013, 97, 601-607.	0.7	65
31	Induced resistance in tomato by SAR activators during predisposing salinity stress. Frontiers in Plant Science, 2013, 4, 116.	1.7	29
32	Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays. PLoS ONE, 2013, 8, e65990.	1.1	80
33	Application of Genomic and Quantitative Genetic Tools to Identify Candidate Resistance Genes for Brown Rot Resistance in Peach. PLoS ONE, 2013, 8, e78634.	1.1	55
34	Propiconazole Sensitivity in Populations of <i>Geotrichum candidum</i> , the Cause of Sour Rot of Peach and Nectarine, in California. Plant Disease, 2012, 96, 752-758.	0.7	6
35	Biology and Sources of Inoculum of Geotrichum candidum Causing Sour Rot of Peach and Nectarine Fruit in California. Plant Disease, 2012, 96, 204-210.	0.7	14
36	Interoperation of Organizational Data, Rules, Processes and Services for Achieving Inter-Organizational Coordination and Collaboration. , 2011, , .		6

#	Article	IF	CITATIONS
37	Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen Verticillium, with the Descriptions of Five New Species. PLoS ONE, 2011, 6, e28341.	1.1	263
38	The Ascomycete Verticillium longisporum Is a Hybrid and a Plant Pathogen with an Expanded Host Range. PLoS ONE, 2011, 6, e18260.	1.1	150
39	Eicosapolyenoic acids. Plant Signaling and Behavior, 2011, 6, 531-533.	1.2	13
40	Abscisic Acid in Salt Stress Predisposition to Phytophthora Root and Crown Rot in Tomato and Chrysanthemum. Phytopathology, 2010, 100, 871-879.	1.1	52
41	Overexpression of a Redox-Regulated Cutinase Gene, <i>MfCUT1</i> , Increases Virulence of the Brown Rot Pathogen <i>Monilinia fructicola</i> on <i>Prunus</i> spp Molecular Plant-Microbe Interactions, 2010, 23, 176-186.	1.4	53
42	A six locus phylogeny reveals high species diversity in Botryosphaeriaceae from California almond. Mycologia, 2010, 102, 1350-1368.	0.8	140
43	Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks Â. Plant Cell, 2010, 22, 3193-3205.	3.1	152
44	Episodic Abiotic Stress as a Potential Contributing Factor to Onset and Severity of Disease Caused by <i>Phytophthora ramorum</i> in <i>Rhododendron</i> and <i>Viburnum</i> . Plant Disease, 2009, 93, 912-918.	0.7	15
45	Fruit Exocarp Phenols in Relation to Quiescence and Development of Monilinia fructicola Infections in Prunus spp.: A Role for Cellular Redox?. Phytopathology, 2007, 97, 269-277.	1.1	78
46	DEA1, a circadian- and cold-regulated tomato gene, protects yeast cells from freezing death. Plant Molecular Biology, 2006, 62, 547-559.	2.0	18
47	Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Current Genetics, 2006, 49, 309-322.	0.8	43
48	A Circadian Rhythm-Regulated Tomato Gene Is Induced by Arachidonic Acid and Phythophthora infestans Infection. Plant Physiology, 2006, 140, 235-248.	2.3	50
49	Induction, Regulation, and Role in Pathogenesis of Appressoria in Monilinia fructicola. Phytopathology, 2006, 96, 1072-1080.	1.1	52
50	Signal Crosstalk and Induced Resistance: Straddling the Line Between Cost and Benefit. Annual Review of Phytopathology, 2005, 43, 545-580.	3.5	525
51	INTERACTIONS BETWEEN ABSCISIC-ACID-MEDIATED RESPONSES AND PLANT RESISTANCE TO PATHOGENS AND INSECTS. Ecology, 2004, 85, 48-58.	1.5	241
52	Nuclear DNA degradation during heterokaryon incompatibility in Neurospora crassa. Fungal Genetics and Biology, 2003, 40, 126-137.	0.9	59
53	Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15217-15221.	3.3	156
54	Molecular Cloning, Characterization, and Expression of a Redox-Responsive Cutinase from Monilinia fructicola (Wint.) Honey. Fungal Genetics and Biology, 2002, 35, 261-276.	0.9	45

#	Article	IF	CITATIONS
55	Induced Systemic Resistance (ISR) Against Pathogens in the Context of Induced Plant Defences. Annals of Botany, 2002, 89, 503-512.	1.4	476
56	Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia, 2002, 131, 227-235.	0.9	191
57	Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. Journal of Chemical Ecology, 2002, 28, 1131-1159.	0.9	162
58	Caspase inhibitors reduce symptom development and limit bacterial proliferation in susceptible plant tissues. Physiological and Molecular Plant Pathology, 2001, 59, 213-221.	1.3	42
59	Hydroperoxides of fatty acids induce programmed cell death in tomato protoplasts. Physiological and Molecular Plant Pathology, 2001, 59, 277-286.	1.3	53
60	Signal Interactions in Induced Resistance to Pathogens and Insect Herbivores. European Journal of Plant Pathology, 2001, 107, 103-111.	0.8	113
61	Affinity Purification and Characterization of a Cutinase from the Fungal Plant Pathogen Monilinia fructicola (Wint.) Honey. Archives of Biochemistry and Biophysics, 2000, 382, 31-38.	1.4	38
62	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1597-1609.	0.9	258
63	Superinduction of the Em gene in rice suspension cells in the presence of ABA and cycloheximide. Plant Cell Reports, 1999, 18, 848-852.	2.8	2
64	Construction of a Plant Transient Expression Vector which Coexpresses the Marker β-glucuronidase. Plant Molecular Biology Reporter, 1998, 16, 367-367.	1.0	0
65	Characterization of potato tuber lipoxygenase cDNAs and lipoxygenase expression in potato tubers and leaves. Physiologia Plantarum, 1998, 102, 257-271.	2.6	23
66	Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersicon esculentum) foliage. Entomologia Experimentalis Et Applicata, 1998, 86, 267-279.	0.7	67
67	Improved Detection of Polygalacturonase Activity due to Mucor piriformis with a Modified Dinitrosalicylic Acid Reagent. Phytopathology, 1997, 87, 161-163.	1.1	26
68	Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia, 1997, 113, 74-81.	0.9	185
69	Apoptosis: A Functional Paradigm for Programmed Plant Cell Death Induced by a Host-Selective Phytotoxin and Invoked during Development. Plant Cell, 1996, 8, 375.	3.1	120
70	Sphingosine-related mycotoxins in plant and animal diseases. Canadian Journal of Botany, 1995, 73, 459-467.	1.2	52
71	The 73-kb pIAA plasmid increases competitive fitness of <i>Pseudomonas syringae</i> subspecies <i>savastanoi</i> in oleander. Canadian Journal of Microbiology, 1993, 39, 659-664.	0.8	30
72	Regulation of Em Gene Expression in Rice. Plant Physiology, 1992, 98, 1356-1363.	2.3	136

#	Article	IF	CITATIONS
73	Rapid Stimulation of 5-Lipoxygenase Activity in Potato by the Fungal Elicitor Arachidonic Acid. Plant Physiology, 1992, 100, 1448-1456.	2.3	74
74	Differential Induction and Suppression of Potato 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Genes in Response to Phytophthora infestans and to Its Elicitor Arachidonic Acid. Plant Cell, 1992, 4, 1333.	3.1	45
75	Evidence for release of the elicitor arachidonic acid and its metabolites from sporangia of Phytophthora infestans during infection of potato. Physiological and Molecular Plant Pathology, 1992, 41, 61-72.	1.3	41
76	Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Applied and Environmental Microbiology, 1991, 57, 535-538.	1.4	1,055
77	Rapid changes in protein synthesis after application of arachidonic acid to potato tuber tissue. Physiological and Molecular Plant Pathology, 1989, 35, 347-356.	1.3	15
78	Involvement of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in the Regulation of Sesquiterpenoid Phytoalexin Synthesis in Potato. Plant Physiology, 1987, 84, 404-408.	2.3	111
79	Factors Affecting the Elicitation of Sesquiterpenoid Phytoalexin Accumulation by Eicosapentaenoic and Arachidonic Acids in Potato. Plant Physiology, 1982, 70, 1417-1424.	2.3	114
80	Cylindrocladiella hahajimaensis, a new species of Cylindrocladiella transferred from Verticillium. MycoKeys, 0, 4, 1-8.	0.8	4
81	Emerging Infectious Plant Diseases. , 0, , 337-366.		7