Matthew O Reese

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2359789/matthew-o-reese-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 6,756 82 33 h-index g-index citations papers 5.61 7,835 12.5 93 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
86	Dual-Wavelength Time-Resolved Photoluminescence Study of CdSexTe1-x Surface Passivation via MgyZn1-yO and Al2O3. <i>IEEE Journal of Photovoltaics</i> , 2022 , 12, 309-315	3.7	1
85	Surface Modification of Backsheets Using Coupling Agents for Roll-To-Roll Processed Thin-Film Solar Photovoltaic (PV) Module Packaging Application. <i>ACS Applied Materials & Company: Interfaces</i> , 2021 , 13, 1682-1692	9.5	1
84	Tailoring SnO2, (Mg,Zn)O, and Ga:(Mg,Zn)O electro-optical properties and stability for solar cells. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 034002	3	4
83	Exceeding 200 ns Lifetimes in Polycrystalline CdTe Solar Cells. Solar Rrl, 2021, 5, 2100173	7.1	4
82	3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. <i>Joule</i> , 2021 , 5, 1057-107	′3 7.8	19
81	Carrier lifetime as a function of Se content for CdSexTe1-x films grown on Al2O3 and MgZnO 2021,		2
80	Colossal grain growth in Cd(Se,Te) thin films and their subsequent use in CdTe epitaxy by close-spaced sublimation. <i>JPhys Energy</i> , 2021 , 3, 024003	4.9	1
79	Stable CdTe Photoanodes with Energetics Matching Those of a Coating Intermediate Band. <i>ACS Energy Letters</i> , 2020 , 5, 1865-1871	20.1	8
78	Sputtered p-Type CuxZn1⊠S Back Contact to CdTe Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5427-5438	6.1	5
77	Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 25895-25902	9.5	5
76	Characterizing the Efficiency of Perovskite Solar Cells and Light-Emitting Diodes. <i>Joule</i> , 2020 , 4, 1206-1	23 5.8	24
75	The 2020 photovoltaic technologies roadmap. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 493001	3	128
74	The Molybdenum Oxide Interface Limits the High-Temperature Operational Stability of Unencapsulated Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 2349-2360	20.1	31
73	Thin-Film Solar Cells with 19% Efficiency by Thermal Evaporation of CdSe and CdTe. <i>ACS Energy Letters</i> , 2020 , 5, 892-896	20.1	50
72	From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. <i>Advanced Energy Materials</i> , 2020 , 10, 1904054	21.8	119
71	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. <i>Nature Energy</i> , 2020 , 5, 35-49	62.3	369
70	Stable magnesium zinc oxide by reactive Co-Sputtering for CdTe-based solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 210, 110521	6.4	12

(2017-2020)

69	Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics. <i>Langmuir</i> , 2020 , 36, 4630-4636	4	7
68	Enabling Flexible All-Perovskite Tandem Solar Cells. <i>Joule</i> , 2019 , 3, 2193-2204	27.8	211
67	Carrier lifetimes of >1 🛭 in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. <i>Science</i> , 2019 , 364, 475-479	33.3	496
66	SnO-Catalyzed Oxidation in High-Efficiency CdTe Solar Cells. <i>ACS Applied Materials & Description</i> , 11, 13003-13010	9.5	14
65	Measurement of band offsets and shunt resistance in CdTe solar cells through temperature and intensity dependence of open circuit voltage and photoluminescence. <i>Solar Energy</i> , 2019 , 189, 389-397	6.8	8
64	Tailoring MgZnO/CdSeTe Interfaces for Photovoltaics. <i>IEEE Journal of Photovoltaics</i> , 2019 , 9, 888-892	3.7	34
63	Combinatorial study of MZO emitters for CdTe-based solar cells 2019 ,		1
62	Oxidative segregation of Group V dopants in CdTe solar cells 2019 ,		1
61	Doping of CdTe using CuCl2 Solution for Highly Efficient Photovoltaic Devices 2019,		7
60	Floating Photovoltaic Systems: Assessing the Technical Potential of Photovoltaic Systems on Man-Made Water Bodies in the Continental United States. <i>Environmental Science & Environmental Science & E</i>	10.3	58
59	Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization. <i>ACS Energy Letters</i> , 2018 , 3, 322-328	20.1	111
58	Mitigation of Crack Formation During Thermo-Mechanical Delamination of CdTe Solar Cells 2018,		1
57	Thermomechanical Lift-Off and Recontacting of CdTe Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 44854-44861	9.5	12
56	Increasing markets and decreasing package weight for high-specific-power photovoltaics. <i>Nature Energy</i> , 2018 , 3, 1002-1012	62.3	66
55	Interfaces Between CdTe and ALD Al2O3. IEEE Journal of Photovoltaics, 2018, 8, 1858-1861	3.7	11
54	Stability at Scale: Challenges of Module Interconnects for Perovskite Photovoltaics. <i>ACS Energy Letters</i> , 2018 , 3, 2502-2503	20.1	23
53	Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction. <i>Nano Letters</i> , 2017 , 17, 1020-1027	11.5	55
52	Two-Dimensional Cadmium Chloride Nanosheets in Cadmium Telluride Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 20561-20565	9.5	24

51	Perovskite ink with wide processing window for scalable high-efficiency solar cells. <i>Nature Energy</i> , 2017 , 2,	62.3	398
50	Transparent Ohmic Contacts for Solution-Processed, Ultrathin CdTe Solar Cells. <i>ACS Energy Letters</i> , 2017 , 2, 270-278	20.1	27
49	Flexible Glass in Thin Film Photovoltaics 2017 , 211-246		1
48	Evolution of oxygenated cadmium sulfide (CdS:O) during high-temperature CdTe solar cell fabrication. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 157, 276-285	6.4	21
47	PECVD Synthesis of Flexible Optical Coatings for Renewable Energy Applications. <i>Plasma Processes and Polymers</i> , 2016 , 13, 184-190	3.4	7
46	Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics. <i>Nano Energy</i> , 2016 , 22, 439-452	17.1	64
45	Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe. <i>APL Materials</i> , 2016 , 4, 116102	5.7	34
44	Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection. <i>ACS Energy Letters</i> , 2016 , 1, 38-45	20.1	209
43	Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime. <i>IEEE Journal of Photovoltaics</i> , 2016 , 6, 1641-1644	3.7	21
42	A direct solution deposition approach to CdTe thin films. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 916	7- 9 .171	17
42 41	A direct solution deposition approach to CdTe thin films. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 916. Semi-insulating Sn-Zr-O: Tunable resistance buffer layers. <i>Applied Physics Letters</i> , 2015 , 106, 092106	7- 9.1 71	17
		,	<i>'</i>
41	Semi-insulating Sn-Zr-O: Tunable resistance buffer layers. <i>Applied Physics Letters</i> , 2015 , 106, 092106 Properties of reactively sputtered oxygenated cadmium sulfide (CdS:O) and their impact on CdTe solar cell performance. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> ,	3.4	1
41 40	Semi-insulating Sn-Zr-O: Tunable resistance buffer layers. <i>Applied Physics Letters</i> , 2015 , 106, 092106 Properties of reactively sputtered oxygenated cadmium sulfide (CdS:O) and their impact on CdTe solar cell performance. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2015 , 33, 021203 Modeling moisture ingress through polyisobutylene-based edge-seals. <i>Progress in Photovoltaics:</i>	3.4	1 47
41 40 39	Semi-insulating Sn-Zr-O: Tunable resistance buffer layers. <i>Applied Physics Letters</i> , 2015 , 106, 092106 Properties of reactively sputtered oxygenated cadmium sulfide (CdS:O) and their impact on CdTe solar cell performance. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2015 , 33, 021203 Modeling moisture ingress through polyisobutylene-based edge-seals. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 570-581 Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells.	3.4 2.9 6.8	1 47 26
41 40 39 38	Semi-insulating Sn-Zr-O: Tunable resistance buffer layers. <i>Applied Physics Letters</i> , 2015 , 106, 092106 Properties of reactively sputtered oxygenated cadmium sulfide (CdS:O) and their impact on CdTe solar cell performance. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2015 , 33, 021203 Modeling moisture ingress through polyisobutylene-based edge-seals. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 570-581 Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells. <i>Nanoscale</i> , 2015 , 7, 6556-66 Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead	3·4 2.9 6.8	1 47 26
41 40 39 38 37	Semi-insulating Sn-Zr-O: Tunable resistance buffer layers. <i>Applied Physics Letters</i> , 2015 , 106, 092106 Properties of reactively sputtered oxygenated cadmium sulfide (CdS:O) and their impact on CdTe solar cell performance. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2015 , 33, 021203 Modeling moisture ingress through polyisobutylene-based edge-seals. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 570-581 Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells. <i>Nanoscale</i> , 2015 , 7, 6556-66 Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based Solar Cells. <i>Chemistry of Materials</i> , 2015 , 27, 4814-4820	3.4 2.9 6.8 7.7 9.6	1 47 26 33 108

(2009-2013)

33	Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. <i>Physical Review Letters</i> , 2013 , 111, 067402	7.4	96
32	Evaluation of the sensitivity limits of water vapor transmission rate measurements using electrical calcium test. <i>Review of Scientific Instruments</i> , 2013 , 84, 025109	1.7	22
31	Comparing the Fundamental Physics and Device Performance of Transparent, Conductive Nanostructured Networks with Conventional Transparent Conducting Oxides. <i>Advanced Energy Materials</i> , 2012 , 2, 353-360	21.8	121
30	Process development of CdTe solar cells grown at high temperatures on engineered glass 2012,		3
29	Chemically treating poly(3-hexylthiophene) defects to improve bulk heterojunction photovoltaics. <i>ACS Applied Materials & Discrete Mate</i>	9.5	22
28	Consensus stability testing protocols for organic photovoltaic materials and devices. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 1253-1267	6.4	690
27	Air-processed organic photovoltaic devices fabricated with hot press lamination. <i>Organic Electronics</i> , 2011 , 12, 108-112	3.5	27
26	Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 1382-1388	6.4	107
25	Quantitative calcium resistivity based method for accurate and scalable water vapor transmission rate measurement. <i>Review of Scientific Instruments</i> , 2011 , 82, 085101	1.7	58
24	Overcoming degradation in organic photovoltaics: Illuminating the role of fullerene functionalization 2011 ,		1
23	Novel transparent conducting barriers for photovoltaics 2010,		1
22	Enhanced lifetime in unencapsulated organic photovoltaics with air stable electrodes 2010,		6
21	A simple miniature controlled-atmosphere chamber for optoelectronic characterizations. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 1254-1258	6.4	13
20	The Effect of Nanoparticle Shape on the Photocarrier Dynamics and Photovoltaic Device Performance of Poly(3-hexylthiophene):CdSe Nanoparticle Bulk Heterojunction Solar Cells. <i>Advanced Functional Materials</i> , 2010 , 20, 2629-2635	15.6	126
19	Photoinduced Degradation of Polymer and Polymer Fullerene Active Layers: Experiment and Theory. <i>Advanced Functional Materials</i> , 2010 , 20, 3476-3483	15.6	229
18	Humidity-resistant high-conductivity amorphous-InZnO transparent conductors 2009,		2
17	Endohedral fullerenes for organic photovoltaic devices. <i>Nature Materials</i> , 2009 , 8, 208-12	27	547
16	Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells. <i>Thin Solid Films</i> , 2009 , 517, 2781-2786	2.2	93

15	Ultrasonic spray deposition for production of organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2009 , 93, 447-453	6.4	148
14	Impact of contact evolution on the shelf life of organic solar cells. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7638		150
13	Treating Poly(3-hexylthiophene) with Dimethylsulfate Improves Its Photoelectrical Properties. <i>Chemistry of Materials</i> , 2008 , 20, 6307-6309	9.6	29
12	Schottky solar cells based on colloidal nanocrystal films. <i>Nano Letters</i> , 2008 , 8, 3488-92	11.5	824
11	Short-term metal/organic interface stability investigations of organic photovoltaic devices. <i>Conference Record of the IEEE Photovoltaic Specialists Conference</i> , 2008 ,		2
10	Do the defects make it work? Defect engineering in pi-conjugated polymers and their solar cells. <i>Conference Record of the IEEE Photovoltaic Specialists Conference</i> , 2008 ,		3
9	Optimal negative electrodes for poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices. <i>Applied Physics Letters</i> , 2008 , 92, 053307	3.4	160
8	Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 746-752	6.4	200
7	Antenna-Coupled Niobium Bolometers for Terahertz Spectroscopy. <i>IEEE Transactions on Applied Superconductivity</i> , 2007 , 17, 412-415	1.8	20
6	Superconducting microbolometers for time-resolved terahertz spectroscopy 2007,		1
5	Niobium Hot Electron Bolometer Development for a Submillimeter Heterodyne Array Camera. <i>IEEE Transactions on Applied Superconductivity</i> , 2007 , 17, 403-406	1.8	7
4	Microfabricated fountain pens for high-density DNA arrays. <i>Genome Research</i> , 2003 , 13, 2348-52	9.7	29
3	CHAPTER 1. Reliably Measuring the Performance of Emerging Photovoltaic Solar Cells. <i>RSC Nanoscience and Nanotechnology</i> ,1-32		1
2	Revealing the Importance of Front Interface Quality in Highly Doped CdSexTe1\(\mathbb{Z}\) Solar Cells. <i>ACS Energy Letters</i> ,4203-4208	20.1	1
1	Direct Deposition of Nonaqueous SnO2 Dispersion by Blade Coating on Perovskites for the Scalable Fabrication of pth Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> ,	6.1	3