
Axel Gödecke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2359552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Master switches in cardiac ischaemia: the Collaborative Research Center (CRC) 1116 of the German Research Foundation. European Heart Journal, 2022, , .	2.2	1
2	4-hydroxytamoxifen does not deteriorate cardiac function in cardiomyocyte-specific MerCreMer transgenic mice. Basic Research in Cardiology, 2021, 116, 8.	5.9	9
3	Myoglobin, expressed in brown adipose tissue of mice, regulates the content and activity of mitochondria and lipid droplets. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 159026.	2.4	14
4	The Autophagy-Initiating Kinase ULK1 Controls RIPK1-Mediated Cell Death. Cell Reports, 2020, 31, 107547.	6.4	39
5	Cardiac Hyaluronan Synthesis Is Critically Involved in the Cardiac Macrophage Response and Promotes Healing After Ischemia Reperfusion Injury. Circulation Research, 2019, 124, 1433-1447.	4.5	47
6	IGF1 Treatment Improves Cardiac Remodeling after Infarction by Targeting Myeloid Cells. Molecular Therapy, 2019, 27, 46-58.	8.2	31
7	qPCR—25 years old but still a matter of debate. Cardiovascular Research, 2018, 114, 201-202.	3.8	2
8	Insulin Resistance and Vulnerability to Cardiac Ischemia. Diabetes, 2018, 67, 2695-2702.	0.6	31
9	Echocardiographic Analysis of Cardiac Function after Infarction in Mice: Validation of Single-Plane Long-Axis View Measurements and the Bi-Plane Simpson Method. Ultrasound in Medicine and Biology, 2018, 44, 1544-1555.	1.5	21
10	Intra- and Interorgan Communication in the Cardiovascular System: A Special View on Redox Regulation. Antioxidants and Redox Signaling, 2017, 26, 613-615.	5.4	6
11	Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases. Antioxidants and Redox Signaling, 2017, 26, 700-717.	5.4	38
12	miR-223–IGF-IR signalling in hypoxia- and load-induced right-ventricular failure: a novel therapeutic approach. Cardiovascular Research, 2016, 111, 184-193.	3.8	54
13	Circulating NOS3 Modulates Left Ventricular Remodeling following Reperfused Myocardial Infarction. PLoS ONE, 2015, 10, e0120961.	2.5	24
14	Endothelial NOS (NOS3) impairs myocardial function in developing sepsis. Basic Research in Cardiology, 2013, 108, 330.	5.9	35
15	Systematic Analysis Reveals Elongation Factor 2 and α-Enolase as Novel Interaction Partners of AKT2. PLoS ONE, 2013, 8, e66045.	2.5	13
16	IGF-IR signaling attenuates the age-related decline of diastolic cardiac function. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E213-E222.	3.5	29
17	β-Adrenergic signaling and response to pressure overload in transgenic mice with cardiac-specific overexpression of inducible NO synthase. Nitric Oxide - Biology and Chemistry, 2011, 25, 11-21.	2.7	4
18	Myoglobin-deficient mice activate a distinct cardiac gene expression program in response to isoproterenol-induced hypertrophy. Physiological Genomics, 2010, 41, 137-145.	2.3	30

Axel Gödecke

#	Article	IF	CITATIONS
19	Myoglobin: safeguard of myocardial oxygen supply during systolic compression?. Cardiovascular Research, 2010, 87, 4-5.	3.8	7
20	Nitric oxideâ€mediated protein modification in cardiovascular physiology and pathology. Proteomics - Clinical Applications, 2008, 2, 811-822.	1.6	10
21	Nitrosative Stress Leads to Protein Glutathiolation, Increased S-Nitrosation, and Up-regulation of Peroxiredoxins in the Heart. Journal of Biological Chemistry, 2008, 283, 17440-17449.	3.4	31
22	In vivo 2D mapping of impaired murine cardiac energetics in NO-induced heart failure. Magnetic Resonance in Medicine, 2007, 57, 50-58.	3.0	39
23	AAV vector re-targeting: A small step on the way to cardiac-specific gene transfer. Cardiovascular Research, 2006, 70, 6-8.	3.8	3
24	On the impact of NO–globin interactions in the cardiovascular system. Cardiovascular Research, 2006, 69, 309-317.	3.8	21
25	Oxygen supply and nitric oxide scavenging by myoglobin contribute to exercise endurance and cardiac function. FASEB Journal, 2005, 19, 1015-1017.	0.5	46
26	Lack of Myoglobin Causes a Switch in Cardiac Substrate Selection. Circulation Research, 2005, 96, e68-75.	4.5	57
27	Local Atrial Natriuretic Peptide Signaling Prevents Hypertensive Cardiac Hypertrophy in Endothelial Nitric-oxide Synthase-deficient Mice. Journal of Biological Chemistry, 2005, 280, 21594-21599.	3.4	49
28	Targeted Disruption of <i>cd73</i> /Ecto-5′-Nucleotidase Alters Thromboregulation and Augments Vascular Inflammatory Response. Circulation Research, 2004, 95, 814-821.	4.5	220
29	The Janus Faces of NO?. Circulation Research, 2004, 94, e55.	4.5	10
30	Role of myoglobin in the antioxidant defense of the heart. FASEB Journal, 2004, 18, 1156-1158.	0.5	140
31	Adaptation of the myoglobin knockout mouse to hypoxic stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R786-R792.	1.8	28
32	Regulation of cellular respiration in myoglobin-deficient mouse heart. Molecular and Cellular Biochemistry, 2004, 256, 201-208.	3.1	6
33	Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radical Biology and Medicine, 2003, 35, 790-796.	2.9	519
34	Acute Inhibition of Myoglobin Impairs Contractility and Energy State of iNOS-Overexpressing Hearts. Circulation Research, 2003, 92, 1352-1358.	4.5	59
35	Myoglobin Protects the Heart from Inducible Nitric-oxide Synthase (iNOS)-mediated Nitrosative Stress. Journal of Biological Chemistry, 2003, 278, 21761-21766.	3.4	76
36	Endothelial dysfunction of coronary resistance vessels in apoEâ^'/â^' mice involves NO but not prostacyclin-dependent mechanisms. Cardiovascular Research, 2002, 53, 253-262.	3.8	37

Axel Gödecke

#	Article	IF	CITATIONS
37	Cardiac-Specific Overexpression of Inducible Nitric Oxide Synthase Does Not Result in Severe Cardiac Dysfunction. Circulation Research, 2002, 90, 93-99.	4.5	134
38	Inotropic response to βâ€adrenergic receptor stimulation and antiâ€adrenergic effect of ACh in endothelial NO synthaseâ€deficient mouse hearts. Journal of Physiology, 2001, 532, 195-204.	2.9	112
39	Adaptive mechanisms of the cardiovascular system in transgenic mice - lessons from eNOS and myoglobin knockout mice. Basic Research in Cardiology, 2000, 95, 492-498.	5.9	38
40	Insulin-Like Growth Factor 1 Attenuates the Pro-Inflammatory Phenotype of Neutrophils in Myocardial Infarction. Frontiers in Immunology, 0, 13, .	4.8	11