
Philip W Gassman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2359319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated assessment of nitrogen runoff to the Gulf of Mexico. Resources and Energy Economics, 2022, 67, 101279.	1.1	7
2	Determination of accurate baseline representation for three Central Iowa watersheds within a HAWQS-based SWAT analyses. Science of the Total Environment, 2022, 839, 156302.	3.9	4
3	Conceptual Framework of Connectivity for a National Agroecosystem Model Based on Transport Processes and Management Practices. Journal of the American Water Resources Association, 2021, 57, 154-169.	1.0	10
4	A review of alternative climate products for SWAT modelling: Sources, assessment and future directions. Science of the Total Environment, 2021, 795, 148915.	3.9	41
5	Biomass Production with Conservation Practices for Two Iowa Watersheds. Journal of the American Water Resources Association, 2020, 56, 1030-1044.	1.0	6
6	Development of alternative SWAT-based models for simulating water budget components and streamflow for a karstic-influenced watershed. Catena, 2020, 195, 104801.	2.2	27
7	A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Advances in Water Resources, 2020, 143, 103662.	1.7	136
8	Analysis of alternative climate datasets and evapotranspiration methods for the Upper Mississippi River Basin using SWAT within HAWQS. Science of the Total Environment, 2020, 720, 137562.	3.9	27
9	Spatiotemporal characterization of nutrient pollution source compositions in the Xiaohong River Basin, China. Ecological Indicators, 2019, 107, 105676.	2.6	17
10	A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water (Switzerland), 2019, 11, 914.	1.2	78
11	Some Challenges in Hydrologic Model Calibration for Large-Scale Studies: A Case Study of SWAT Model Application to Mississippi-Atchafalaya River Basin. Hydrology, 2019, 6, 17.	1.3	15
12	Quantifying the contribution of tile drainage to basin-scale water yield using analytical and numerical models. Science of the Total Environment, 2019, 657, 297-309.	3.9	38
13	Evaluating carbon sequestration for conservation agriculture and tillage systems in Cambodia using the EPIC model. Agriculture, Ecosystems and Environment, 2018, 251, 37-47.	2.5	24
14	Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC. Sustainability, 2018, 10, 2665.	1.6	7
15	Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia. Agricultural Systems, 2018, 166, 90-100.	3.2	14
16	Simulation of Daily Flow Pathways, Tileâ€Drain Nitrate Concentrations, and Soilâ€Nitrogen Dynamics Using SWAT. Journal of the American Water Resources Association, 2017, 53, 1251-1266.	1.0	20
17	Evaluation of Existing and Modified Wetland Equations in the <scp>SWAT</scp> Model. Journal of the American Water Resources Association, 2017, 53, 1267-1280.	1.0	16
18	Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed. Science of the Total Environment, 2017, 607-608, 1188-1200.	3.9	50

PHILIP W GASSMAN

#	Article	IF	CITATIONS
19	Water Quality Assessment of Largeâ€scale Bioenergy Cropping Scenarios for the Upper Mississippi and Ohioâ€Tennessee River Basins. Journal of the American Water Resources Association, 2017, 53, 1355-1367.	1.0	24
20	Influence of Bioenergy Crop Production and Climate Change on Ecosystem Services. Journal of the American Water Resources Association, 2017, 53, 1323-1335.	1.0	6
21	Policy Implications from Multiâ€scale Watershed Models of Biofuel Crop Adoption across the Corn Belt. Journal of the American Water Resources Association, 2017, 53, 1313-1322.	1.0	10
22	Assessment of Bioenergy Cropping Scenarios for the Boone River Watershed in North Central Iowa, United States. Journal of the American Water Resources Association, 2017, 53, 1336-1354.	1.0	17
23	The Impact of Para Rubber Expansion on Streamflow and Other Water Balance Components of the Nam Loei River Basin, Thailand. Water (Switzerland), 2017, 9, 1.	1.2	108
24	Assessment of Three Long-Term Gridded Climate Products for Hydro-Climatic Simulations in Tropical River Basins. Water (Switzerland), 2017, 9, 229.	1.2	56
25	Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production. Hydrology and Earth System Sciences, 2016, 20, 3325-3342.	1.9	34
26	The Optimality of Using Marginal Land for Bioenergy Crops: Tradeoffs between Food, Fuel, and Environmental Services. Agricultural and Resource Economics Review, 2016, 45, 217-245.	0.6	14
27	Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Environmental Management, 2016, 57, 894-911.	1.2	73
28	Placing bounds on extreme temperature response of maize. Environmental Research Letters, 2015, 10, 124001.	2.2	21
29	A refined regional modeling approach for the Corn Belt – Experiences and recommendations for large-scale integrated modeling. Journal of Hydrology, 2015, 524, 348-366.	2.3	48
30	Regional changes in nitrate loadings in the Upper Mississippi River Basin under predicted mid-century climate. Regional Environmental Change, 2015, 15, 449-460.	1.4	33
31	Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18530-18535.	3.3	89
32	Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrological Processes, 2014, 28, 2772-2781.	1.1	41
33	The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrological Processes, 2014, 28, 3314-3325.	1.1	86
34	Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality, 2014, 43, 1-8.	1.0	386
35	Potential water quality changes due to corn expansion in the Upper Mississippi River Basin. , 2011, 21, 1068-1084.		90
36	Leastâ€cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone. Ecological Applications, 2010, 20, 1542-1555.	1.8	110

PHILIP W GASSMAN

#	Article	IF	CITATIONS
37	Assessment of Total Maximum Daily Load Implementation Strategies for Nitrate Impairment of the Raccoon River, Iowa. Journal of Environmental Quality, 2010, 39, 1317-1327.	1.0	69
38	Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resources Research, 2008, 44, .	1.7	333
39	Transfers and environmental co-benefits of carbon sequestration in agricultural soils: retiring agricultural land in the Upper Mississippi River Basin. Climatic Change, 2007, 80, 91-107.	1.7	19
40	CLIMATE CHHANGE SENSITIVITY ASSESSMENT ON UPPER MISSISSIPPI RIVER BASIN STREAMFLOWS USING SWAT. Journal of the American Water Resources Association, 2006, 42, 997-1015.	1.0	173
41	Alternative practices for sediment and nutrient loss control on livestock farms in northeast Iowa. Agriculture, Ecosystems and Environment, 2006, 117, 135-144.	2.5	74
42	EFFECT OF WATERSHED SUBDIVISION ON SWAT FLOW, SEDIMENT, AND NUTRIENT PREDICTIONS. Journal of the American Water Resources Association, 2004, 40, 811-825.	1.0	174
43	EPIC Tile Flow and Nitrate Loss Predictions for Three Minnesota Cropping Systems. Journal of Environmental Quality, 2001, 30, 822-830.	1.0	36
44	Validation of EPIC for Two Watersheds in Southwest Iowa. Journal of Environmental Quality, 1999, 28, 971-979.	1.0	74