
Goutam Brahmachari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2358812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectroscopic and Structural Investigations on Novel 6-Amino-3-Phenyl-4-(Pyridin-4-yl)-2,4-Dihydropyrano[2,3- <i>c</i>] Pyrazole-5-Carbonitrile by FT-IR, NMR, Docking, and DFT Methods. Polycyclic Aromatic Compounds, 2022, 42, 2288-2304.	1.4	4
2	Facile and Straightforward Synthesis of Racemic Version of Substituted 3-[3-(2-Hydroxyphenyl)-3-oxo-1-arylpropyl]-4-hydroxycoumarins: Easy Access to a Series of Biorelevant Warfarin Analogues. Synthesis, 2022, 54, 451-464.	1.2	10
3	Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs. Medicinal Chemistry, 2022, 18, 536-543.	0.7	2
4	Spectroscopic Investigation of Electron-Releasing Functional Groups Substituted <i>N</i> - <i>Iso</i> -Butyl, <i>S</i> -2-Nitro-1-Phenylethyl Dithiocarbamate – A DFT Approach. Polycyclic Aromatic Compounds, 2022, 42, 6917-6931.	1.4	3
5	Synthesis, spectroscopic characterization, crystal structure, theoretical (DFT) studies and molecular docking analysis of biologically potent isopropyl 5-chloro-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate. Molecular Crystals and Liquid Crystals. 2022, 738, 106-127.	0.4	3
6	Visibleâ€Lightâ€Driven and Singlet Oxygenâ€Mediated Synthesis of Biologically Relevant 2â€Hydroxyphenylatedâ€Î±â€Ketoamides Through Decarboxylative Amidation of 4â€Hydroxycoumarins. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	8
7	Metalâ€Free Sequential Amidation and Intramolecular C sp2 â^'H Direct Amination of Coumarinâ€3â€carboxylic Acids under Ambient Conditions: Scope and Mechanistic Insights. ChemistrySelect, 2022, 7, .	0.7	2
8	Studies on the molecular structure of pterocaronol: A new biologically relevant nor-triterpenoid from Peltophorum pterocarpum (Fabaceae). Journal of Molecular Structure, 2022, 1254, 132390.	1.8	0
9	Synthesis, anticancer activities and experimental-theoretical DNA interaction studies of 2-amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrile. European Journal of Medicinal Chemistry Reports, 2022, 4, 100030.	0.6	6
10	Electrochemical and mechanochemical synthesis of dihydrofuro[3,2- <i>c</i>]chromenones <i>via</i> intramolecular C _{sp3} –H <i>cross</i> -dehydrogenative oxygenation within warfarin frameworks: an efficient and straightforward dual approach. Green Chemistry, 2022, 24, 2825-2838.	4.6	12
11	The druggability of the ATP binding site of glycogen phosphorylase kinase probed by coumarin analogues. Current Research in Chemical Biology, 2022, 2, 100022.	1.4	4
12	Visible-Light-Promoted Intramolecular C–O Bond Formation via C _{sp³} <i>–</i> H Functionalization: A Straightforward Synthetic Route to Biorelevant Dihydrofuro[3,2- <i>c</i>]chromenone Derivatives. Journal of Organic Chemistry, 2022, 87, 4777-4787.	1.7	10
13	A selective luminescent probe to monitor cellular ATP: Potential application for in vivo imaging in zebrafish embryo. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 428, 113895.	2.0	1
14	Photochemical and electrochemical regioselective cross-dehydrogenative C(sp ²)–H sulfenylation and selenylation of substituted benzo[<i>a</i>]phenazin-5-ols. New Journal of Chemistry, 2022, 46, 13483-13497.	1.4	12
15	Structural confirmation and spectroscopic signature of N-Allyl-2â€ ⁴ hydroxy-5-methyl-3-oxo-2, 3-dihydrobenzofuran-2-carboxamide and its monohydrate cluster. Journal of Molecular Structure, 2022, 1267, 133566.	1.8	2
16	Amelioration of oxidative stress mediated inflammation and apoptosis in pancreatic islets by Lupeol in STZ-induced hyperglycaemic mice. Life Sciences, 2022, 305, 120769.	2.0	5
17	Structural confirmation of biorelevant molecule N-iso-butyl, S-2-nitro-1-phenylethyl dithiocarbamate in gas phase and effect of fluorination. Chemical Physics Letters, 2021, 762, 138124.	1.2	11
18	Catalyst- and solvent-free C _{sp2} –H functionalization of 4-hydroxycoumarins <i>via</i> C-3 dehydrogenative aza-coupling under ball-milling. Green Chemistry, 2021, 23, 4762-4770.	4.6	21

#	Article	IF	CITATIONS
19	Green synthetic approaches for biologically relevant 2-amino-4H-pyrans and 2-amino-4H-pyran-annulated heterocycles in aqueous media. , 2021, , 471-504.		3
20	Self-catalytic techniques for the synthesis of biologically relevant heterocyclic scaffolds at room temperature: a recent update. , 2021, , 563-587.		0
21	Crystal structure, Hirshfeld surface analysis, and molecular docking studies of 3,3′-((4-(trifluoromethyl)phenyl) methylene)bis(1-methyl-1 <i>H</i> -indole). Molecular Crystals and Liquid Crystals, 2021, 714, 67-79.	0.4	0
22	Ultrasoundâ€Assisted Expeditious Catalystâ€Free Green Approach towards Diastereoselective Synthesis of Spiro[indolineâ€3,2′â€pyrido[2,1â€ <i>b</i>][1,3]oxazine]â€3′,4′â€dicarboxylate Scaffolds. Chemistry 1263-1270.	Sel ect , 202	21,46,
23	Development of a straightforward and efficient protocol for the one-pot multicomponent synthesis of substituted <i>alpha</i> -aminoallylphosphonates under catalyst-free condition. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 769-779.	0.8	1
24	Visible Light-Driven and Singlet Oxygen-Mediated Photochemical Cross-Dehydrogenative C ₃ –H Sulfenylation of 4-Hydroxycoumarins with Thiols Using Rose Bengal as a Photosensitizer. Journal of Organic Chemistry, 2021, 86, 9658-9669.	1.7	30
25	In vivo therapeutic evaluation of a novel bis-lawsone derivative against tumor following delivery using mesoporous silica nanoparticle based redox-responsive drug delivery system. Materials Science and Engineering C, 2021, 126, 112142.	3.8	22
26	Conformational and vibrational spectroscopic investigation of N-n‑butyl, S-2-nitro-1-(p-tolyl)ethyl dithiocarbamate – a bio-relevant sulfur molecule. Journal of Molecular Structure, 2021, 1238, 130450.	1.8	8
27	Ultrasound-promoted Organic Synthesis - A Recent Update. Current Organic Chemistry, 2021, 25, 1539-1565.	0.9	6
28	Crystallographic structure, activity prediction, and hydrogen bonding analysis of some CSD-based 3,3'-bis-indole derivatives: A review. European Journal of Chemistry, 2021, 12, 493-501.	0.3	0
29	Target prioritization of novel substituted 5-aryl-2-oxo-/thioxo-2,3-dihydro-1H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11(5H)-triones as anticancer agents using in-silico approach. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1415-1424.	2.0	2
30	FT-IR, UV–visible, and NMR Spectral Analyses, Molecular Structure, and Properties of Nevadensin Revealed by Density Functional Theory and Molecular Docking. Polycyclic Aromatic Compounds, 2020, 40, 540-552.	1.4	3
31	Oneâ€pot multicomponent synthesis of a new series of curcuminâ€derived 4 <i>H</i> â€pyrans under ambient conditions. Journal of Heterocyclic Chemistry, 2020, 57, 744-750.	1.4	9
32	Synthesis, structural and vibrational spectroscopic investigation of molecules: N-n-butyl, S-2-nitro-1-phenylethyl dithiocarbamate and N-n-butyl, S-2-nitro-1-(4-flurophenyl)ethyl dithiocarbamate. Vibrational Spectroscopy, 2020, 111, 103151.	1.2	9
33	X-Ray Crystal Structure Analysis of Novel 6-Amino-3-Phenyl-4-(Pyridin-4-yl)-2,4-Dihydropyrano[2,3-c]pyrazole-5-Carbonitrile. Crystallography Reports, 2020, 65, 1202-1207.	0.1	1
34	Diethyl (2-Amino-3-Cyano-4H-Chromen-4-yl)Phosphonate and Its Halogenated Derivatives as Effective Drug: A Theoretical and an Experimental Spectroscopic Study. Polycyclic Aromatic Compounds, 2020, , 1-18.	1.4	0
35	Catalyst―and Additiveâ€Free Decarboxylative Câ€4 Phosphorylation of Coumarinâ€3 arboxylic Acids at Ambient Conditions. Advanced Synthesis and Catalysis, 2020, 362, 5411-5421.	2.1	21
36	Structural, spectroscopic analysis of two hexahydroacridine-1,8(2H,5H)-dione derivatives and identification of drug like properties: Experimental and computational study. Materials Today: Proceedings, 2020, 29, 1050-1054.	0.9	0

#	Article	IF	CITATIONS
37	Series of Functionalized 5-(2-Arylimidazo[1,2- <i>a</i>]pyridin-3-yl)pyrimidine-2,4(1 <i>H</i> ,3 <i>H</i>)-diones: A Water-Mediated Three-Component Catalyst-Free Protocol Revisited. Journal of Organic Chemistry, 2020, 85, 8405-8414.	1.7	17
38	Visible Light-Induced and Singlet Oxygen-Mediated Photochemical Conversion of 4-Hydroxy-α-benzopyrones to 2-Hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamides/carboxylates Using Rose Bengal as a Photosensitizer. Journal of Organic Chemistry, 2020, 85, 8851-8864.	1.7	31
39	Nano-SiO2@[DABCO(CH2CH2CO2H)]+[Br]â^' as an efficient and recyclable SCILL for water mediated facile synthesis of thiol-substituted N-aryl pentasubstituted pyrroles. Catalysis Communications, 2020, 139, 105966.	1.6	6
40	Green synthetic approaches in organophosphorus chemistry: recent developments. Organophosphorus Chemistry, 2020, , 377-389.	0.3	0
41	Design, Synthesis, Characterization, and Crystallographic Behaviors of Some Biologically Important Chromene-Annulated Spiro-Oxindoles: A Drive to Introspect the Comparative Structural Information. Crystallography Reports, 2020, 65, 1179-1186.	0.1	0
42	Synthesis, Characterization, and Crystal Structure of [3,3':3',3''-Terindolin]-2'-One Bis(dimethyl) Tj ETQq0 0 0 rgl	3T /Qverlo 0.1	ck_10 Tf 50 5
43	<i>sp</i> 2â€C–H Acetoxylation of Diversely Substituted (<i>E</i>)â€1â€{Arylmethylene)â€2â€phenylhydrazir Using PhI(OAc) ₂ as Acetoxy Source at Ambient Conditions. European Journal of Organic Chemistry, 2019, 2019, 5925-5933.	ies 1.2	5
44	Discovery and development of anti-inflammatory agents from natural products. , 2019, , 1-6.		4
45	6-Gingerol. , 2019, , 283-295.		1
46	Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon, 2019, 5, e02107.	1.4	21
47	Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines at ambient conditions. Tetrahedron Letters, 2019, 60, 1904-1908.	0.7	29
48	Ceric Ammonium Nitrate (CAN): An Efficient and Ecoâ€Friendly Catalyst for Oneâ€Pot Synthesis of Diversely Functionalized Biscoumarins in Aqueous Medium under Ambient Conditions. ChemistrySelect, 2019, 4, 5415-5420.	0.7	20
49	Sopherone A and B: Two new biologically relevant dibenzo-α-pyrones from Cassia sophera. Fìtoterapìâ, 2019, 136, 104169.	1.1	2
50	Alum (KAl(SO4)2.12H2O) - An Eco-friendly and Versatile Acid-catalyst in Organic Transformations: A Recent Update. Current Green Chemistry, 2019, 6, 12-31.	0.7	6
51	Therapeutics from natural products against neglected tropical diseases: an overview. , 2019, , 1-6.		1
52	Aloe vera: a promising hope against Buruli ulcer. , 2019, , 373-383.		1
53	Total synthetic approaches for lucidone: a promising natural lead candidate against dengue infection. , 2019, , 407-412.		0
54	Camphor-10-Sulfonic Acid (CSA): A Water Compatible Organocatalyst in Organic Transformations. Current Organocatalysis, 2019, 5, 165-181.	0.3	10

#	Article	IF	CITATIONS
55	Sodium Formateâ€Catalyzed Oneâ€Pot Synthesis of Functionalized Spiro[indolineâ€3,5′â€pyrido[2,3â€ <i>d</i>]pyrimidine]/Spiro[acenaphthyleneâ€1,5′â€pyrido[2,3â€ <i>dDerivatives. ChemistrySelect, 2019, 4, 2363-2367.</i>	x]â€pyrim	nidane]
56	Ultrasound-Promoted Expedient and Green Synthesis of Diversely Functionalized 6-Amino-5-((4-hydroxy-2-oxo-2 <i>H</i> -chromen-3-yl)(aryl)methyl)pyrimidine-2,4(1 <i>H</i> ,3 <i>H</i>)-diones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 6369-6380.	3.2	35
57	Diversely Functionalized <i>N</i> â€Alkyl/Substituted alkyl, <i>S</i> â€2â€nitroâ€1â€arylethyl Dithiocarbamates: Green Synthesis, Large Scale Application, and Insights in Reaction Mechanism. ChemistrySelect, 2019, 4, 747-751.	0.7	8
58	Green synthetic approaches in organophosphorus chemistry: recent developments. Organophosphorus Chemistry, 2019, , 424-439.	0.3	0
59	A Facile Synthetic Route to Biologically Relevant Substituted 1,4â€Naphthoquinonylâ€2â€oxoindolinylpyrimidines Under Metalâ€Free Organocatalytic Conditions. ChemistrySelect, 2018, 3, 3621-3625.	0.7	11
60	Sulfamic Acidâ€Catalyzed Oneâ€Pot Synthesis of a New Series of Biologically Relevant Indoleâ€Uracil Molecular Hybrids in Water at Room Temperature. ChemistrySelect, 2018, 3, 3400-3405.	0.7	13
61	Biosynthetic and Total Synthetic Approaches for (+)-Hyperforin. , 2018, , 435-456.		0
62	Molecular Modeling, Spectroscopic Investigations, and Computational Studies of DMSO solvated 7′-amino-1′,3′-dimethyl-2,2′,4′-trioxo-1′,2′,3′,4′,4a′,8a′-tetrahydrospiro[indoline-3 Journal of Structural Chemistry, 2018, 59, 235-244.	, 5û€ 2-pyra	ano[2,3-d]p
63	Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity. Journal of Advanced Research, 2018, 9, 51-61.	4.4	36
64	Structure, spectroscopic analyses (FT-IR and NMR), vibrational study, chemical reactivity and molecular docking study on 3,3'-((4-(trifluoromethyl)phenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione), a promising anticancerous bis-lawsone derivative. Journal of Molecular Structure, 2018, 1154, 596-605.	1.8	7
65	Oneâ€Pot Pseudo Five Component Synthesis of Biologically Relevant 1,2,6â€Triarylâ€4â€arylaminoâ€piperidineâ€3â€eneâ€3―carboxylates: A Decade Update. ChemistrySelect, 2018 9892-9910.	, . , . ,7	22
66	11. P-Chemistry at ambient conditions: A recent update. , 2018, , 214-231.		0
67	Discovery and Development of Neuroprotective Agents From Natural Products. , 2018, , 1-7.		7
68	Ultrasound-Assisted Expedient and Green Synthesis of a New Series of Diversely Functionalized 7-Aryl/heteroarylchromeno[4,3- <i>d</i>]pyrido[1,2- <i>a</i>]pyrimidin-6(7 <i>H</i>)-ones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 11018-11028.	3.2	40
69	Synthesis of Biologically Relevant Heterocycles in Aqueous Media. Asian Journal of Organic Chemistry, 2018, 7, 1982-2004.	1.3	16
70	Triethylamine — A Versatile Organocatalyst in Organic Transformations: A Decade Update. Synthesis, 2018, 50, 4145-4164.	1.2	14
71	Crystal Structure of Ethyl 6-Amino-5-cyano-4-(4-fluorophenyl)- 2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate. Crystallography Reports, 2018, 63, 388-393.	0.1	0
72	Camphorsulfonic Acid (CSA): An Efficient Organocatalyst for the Synthesis or Derivatization of Heterocycles with Biologically Promising Activities. Current Green Chemistry, 2018, 5, 150-167.	0.7	39

#	Article	IF	CITATIONS
73	Andrographolide. , 2017, , 1-27.		2
74	Structural confirmation, single X-ray crystallographic behavior, molecular docking and other physico-chemical properties of gerberinol, a natural dimethyl dicoumarol from Gerbera lanuginosa Benth. (Compositae). Journal of Molecular Structure, 2017, 1136, 214-221.	1.8	12
75	Neuroprotective Natural Products: Clinical Aspects and Modes of Action - An Overview. , 2017, , 1-6.		0
76	Bismuth Nitrate Catalyzed Oneâ€Pot Multicomponent Synthesis of a Novel Series of Diversely Substituted 1,8â€Dioxodecahydroacridines at Room Temperature [#] . ChemistrySelect, 2017, 2, 3311-3316.	0.7	23
77	Facile and Chemically Sustainable Catalystâ€Free Synthesis of Diverse 2â€Arylâ€4â€Alkyl/Arylâ€Pyrano[3,2â€ <i>c</i>]chromenâ€5(4 <i>H</i>)â€Ones by Oneâ€Pot Multicomponent Ro Room Temperature. ChemistrySelect, 2017, 2, 3695-3702.	eactions a	it 17
78	Experimental and quantum chemical studies on poriferasterol – A natural phytosterol isolated from Cassia sophera Linn. (Caesalpiniaceae). Journal of Molecular Structure, 2017, 1143, 184-191.	1.8	4
79	Development of a Water-Mediated and Catalyst-Free Green Protocol for Easy Access to a Huge Array of Diverse and Densely Functionalized Pyrido[2,3- <i>d</i> :6,5- <i>d</i> ′]dipyrimidines via One-Pot Multicomponent Reaction under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5. 9494-9505.	3.2	50
80	Synthesis, spectral characterization, and single crystal structure studies of biologically relevant bis-indoline heterocyclic scaffold. Crystallography Reports, 2017, 62, 889-893.	0.1	1
81	7,8-Dihydroxy-3-methylisochroman-4-one: A Promising Anti-hypertensive Lead-Molecule from Banana (<i>Musa sapientun</i> L.) Peel. , 2017, , 319-330.		0
82	Lipase-Catalyzed Organic Transformations. , 2017, , 325-346.		3
83	Spectral (FT-IR, NMR) Analyses, Molecular Structures, and Chemical Bonding of Two Hexahydroacridine-1,8(2H,5H)-dione Derivatives: A Comparative Quantum Chemical Study. Polycyclic Aromatic Compounds, 2017, 37, 426-441.	1.4	0
84	Cardioprotective Natural Products: Promises and Hopes $\hat{a} \in \mathbb{C}$ An Overview. , 2017, , 1-8.		1
85	Catalyst-Free One-Pot Three-Component Synthesis of Diversely Substituted 5-Aryl-2-oxo-/thioxo-2,3-dihydro-1 <i>H</i> -benzo[6,7]chromeno[2,3- <i>d</i>]pyrimidine-4,6,11(5 <i>H</i>)-trione Under Ambient Conditions. ACS Omega, 2017, 2, 5025-5035.	s1.6	35
86	Trisodium Citrate Dihydrate-Catalyzed One-Pot Three-component Synthesis of Biologically Relevant Diversely Substituted 2-Amino-3-Cyano-4-(3- Indolyl)-4H-Chromenes under Eco-Friendly Conditions. Current Green Chemistry, 2017, 3, 248-258.	0.7	11
87	Editorial: Current Trends in Organic Syntheses: Advances in Green Chemistry Research – Part-II. Current Green Chemistry, 2017, 3, 278-278.	0.7	0
88	Editorial: Current Trends in Organic Syntheses: Advances in Green Chemistry Research - Part-I. Current Green Chemistry, 2017, 3, 194-194.	0.7	0
89	Frontiers in Drug Discovery. , 2017, , .		0
90	Editorial (Thematic Issue: Recent Advances in Organocatalysis). Current Organocatalysis, 2016, 3, 92-92.	0.3	0

#	Article	IF	CITATIONS
91	Selective Pro-Apoptotic Activity of Novel 3,3′-(Aryl/Alkyl-Methylene)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives on Human Cancer Cells via the Induction Reactive Oxygen Species. PLoS ONE, 2016, 11, e0158694.	1.1	36
92	Synthesis, spectroscopic characterization, and crystal structure of a novel indoline derivative. Crystallography Reports, 2016, 61, 1055-1060.	0.1	0
93	X-ray crystallography of methyl (6-amino-5-cyano-2-methyl-4-(2-nitrophenyl)-4H-pyran)-3-carboxylate. Crystallography Reports, 2016, 61, 1051-1054.	0.1	0
94	One-pot green synthesis of biologically relevant novel spiro[indolin-2-one-3,4â€2-pyrano[2,3- <i>c</i>]pyrazoles] and studies on their spectral and X-ray crystallographic behaviors. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 335-343.	0.5	2
95	Synthesis, spectroscopic characterization and crystallographic behavior of a biologically relevant novel indole-fused heterocyclic compound — Experimental and theoretical (DFT) studies. Journal of Molecular Structure, 2016, 1118, 344-355.	1.8	8
96	Synthesis, characterization, and crystal structure of 5,5″-Difluoro-1H,1″H-[3,3′:3′,3″-terindol]-2′ Crystallography Reports, 2016, 61, 225-229.	(1â€2H)-or 0.1	1e. 2
97	Design of Organic Transformations at Ambient Conditions: Our Sincere Efforts to the Cause of Green Chemistry Practice. Chemical Record, 2016, 16, 98-123.	2.9	26
98	Design for carbon–carbon bond forming reactions under ambient conditions. RSC Advances, 2016, 6, 64676-64725.	1.7	82
99	Facile and Chemically Sustainable Oneâ€Pot Synthesis of a Wide Array of Fused <i>O</i> ―and <i>N</i> â€Heterocycles Catalyzed by Trisodium Citrate Dihydrate under Ambient Conditions. Asian Journal of Organic Chemistry, 2016, 5, 271-286.	1.3	71
100	3,5,7-Trimethoxyphenanthrene-1,4-dione: a new biologically relevant natural phenanthrenequinone derivative from Dioscorea prazeri and studies on its single X-ray crystallographic behavior, molecular docking and other physico-chemical properties. RSC Advances, 2016, 6, 7317-7329.	1.7	8
101	Green synthetic approaches in organophosphorus chemistry: recent developments with energy-efficient protocols. Organophosphorus Chemistry, 2016, , 438-491.	0.3	4
102	Sulfamic Acid-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions: An Overview. Current Organocatalysis, 2016, 3, 93-124.	0.3	23
103	Room Temperature Metal-Free Synthesis of Aryl/Heteroaryl-Substituted Bis(6-aminouracil-5-yl)methanes Using Sulfamic Acid (NH2SO3H) as an Efficient and Eco-friendly Organo-Catalyst. Current Organocatalysis, 2016, 3, 125-132.	0.3	14
104	Crystal structure of 2-amino-7,7-dimethyl-5-oxo-4-(pyridin-4-yl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile hemihydrate. Crystallography Reports, 2015, 60, 1111-1115.	0.1	0
105	X-ray studies of 2-amino-4-(3-nitrophenyl)-5-oxo-4,5-dihydropyrano[3,2-c] chromene-3-carbonitrile and 2-amino-7,7-dimethyl-4-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. Crystallography Reports, 2015, 60, 1136-1141.	0.1	0
106	Microwave-assisted Hirao reaction: recent developments. ChemTexts, 2015, 1, 1.	1.0	6
107	Screening for Low-Cost, Efficient and Eco-Friendly Catalysts in Current Green Chemistry Practice: A Test Case with Sodium Formate. Trends in Green Chemistry, 2015, 1, .	0.2	1
108	In vitro evaluation and in silico screening of synthetic acetylcholinesterase inhibitors bearing functionalized piperidine pharmacophores. Bioorganic and Medicinal Chemistry, 2015, 23, 4567-4575.	1.4	50

#	Article	IF	CITATIONS
109	Synthesis, characterization, and crystal structure of 2-amino-7-methyl-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c]pyran-3-carbonitrile. Crystallography Reports, 2015, 60, 1126-1130.	0.1	1
110	Green Synthetic Approaches for Biologically Relevant 2-amino-4H-pyrans and 2-amino-4H-pyran-Annulated Heterocycles in Aqueous Mediaâ^—. , 2015, , 185-208.		10
111	Green Synthetic Approaches for Biologically Relevant Heterocycles. , 2015, , 1-6.		29
112	Sulfamic Acid-Catalyzed One-Pot Room Temperature Synthesis of Biologically Relevant Bis-Lawsone Derivatives. ACS Sustainable Chemistry and Engineering, 2015, 3, 2058-2066.	3.2	39
113	Ceric ammonium nitrate (CAN): an efficient and eco-friendly catalyst for the one-pot synthesis of alkyl/aryl/heteroaryl-substituted bis(6-aminouracil-5-yl)methanes at room temperature. RSC Advances, 2015, 5, 39263-39269.	1.7	34
114	Carbon – Phosphorus Bond Forming Reactions at Room Temperature. , 2015, , 273-297.		0
115	Carbon – Carbon Bond Forming Reactions at Room Temperature. , 2015, , 1-73.		1
116	Carbon – Nitrogen Bond Forming Reactions at Room Temperature. , 2015, , 75-188.		0
117	Carbon – Oxygen Bond Forming Reactions at Room Temperature. , 2015, , 189-240.		Ο
118	Combined experimental (FT-IR, UV–visible spectra, NMR) and theoretical studies on the molecular structure, vibrational spectra, HOMO, LUMO, MESP surfaces, reactivity descriptor and molecular docking of Phomarin. Journal of Molecular Structure, 2015, 1096, 94-101.	1.8	44
119	Room Temperature One-Pot Green Synthesis of Coumarin-3-carboxylic Acids in Water: A Practical Method for the Large-Scale Synthesis. ACS Sustainable Chemistry and Engineering, 2015, 3, 2350-2358.	3.2	75
120	Synthesis, spectroscopic characterization, X-ray analysis and theoretical studies on the spectralÂfeatures (FT-IR, ¹ H-NMR), chemical reactivity, NBO analyses of 2-(4-fluorophenyl)-2-(4-fluorophenylamino)acetonitrile and its docking into IDO enzyme. RSC Advances, 2015, 5, 80967-80977.	1.7	8
121	X-ray studies of 2-amino-5-oxo-4-propyl-4,5-dihydropyrano[3,2-c]chromene-3-carbonitrile. Crystallography Reports, 2015, 60, 865-868.	0.1	0
122	Synthesis, characterization, and crystal structure of 2-amino-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c]chromene-3-carbonitrile. Crystallography Reports, 2015, 60, 1142-1146.	0.1	1
123	Sodium Formateâ€Catalyzed Oneâ€Pot Synthesis of Benzopyranopyrimidines and 4â€Thioâ€substituted 4 <i>H</i> â€Chromenes via Multicomponent Reaction at Room Temperature. Journal of Heterocyclic Chemistry, 2015, 52, 653-659.	1.4	36
124	Hippocampal Neurogenesis, Neurotrophic Factors and Depression: Possible Therapeutic Targets?. CNS and Neurological Disorders - Drug Targets, 2015, 13, 1708-1721.	0.8	71
125	Catalyst-Free Organic Synthesis At Room Temperature in Aqueous and Non-Aqueous Media: An Emerging Field of Green Chemistry Practice and Sustainability. Current Green Chemistry, 2015, 2, 274-305.	0.7	52
126	Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity. Organic and Medicinal Chemistry Letters, 2014, 4, 18.	2.0	44

#	Article	IF	CITATIONS
127	Ammonium Chloride Catalysed One-pot Multicomponent Synthesis of 1,8-dioxo-octahydroxanthenes and <i>N</i> -aryl-1,8-dioxodecahydroacridines Under Solvent Free Conditions. Journal of Chemical Research, 2014, 38, 745-750.	0.6	39
128	Crystal structure of 2-(4-nitrophenyl)-2-(phenylamino)propanenitrile and 2-(4-fluorophenylamino)-2-(4-nitrophenyl)propanenitrile. Crystallography Reports, 2014, 59, 1037-1041.	0.1	0
129	2-[4-(Piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidin-2-yl]phenol. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o447-o448.	0.2	2
130	6-Amino-3-methyl-4-(3,4,5-trimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o875-o876.	0.2	4
131	Crystal structure of 5,5′-[(4-fluorophenyl)methylene]bis[6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione]. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1098-o1099.	0.2	1
132	l-Proline catalyzed multicomponent one-pot synthesis of gem-diheteroarylmethane derivatives using facile grinding operation under solvent-free conditions at room temperature. RSC Advances, 2014, 4, 7380.	1.7	65
133	Ecoâ€friendly, Oneâ€Pot Multicomponent Synthesis of Pyran Annulated Heterocyclic Scaffolds at Room Temperature Using Ammonium or Sodium Formate as Nonâ€toxic Catalyst. Journal of Heterocyclic Chemistry, 2014, 51, E303.	1.4	53
134	Oneâ€Pot Synthesis of 3â€{(<i>N</i> â€Alkylanilino)(aryl)methyl]indoles via a Transition Metal Assisted Threeâ€Component Condensation at Room Temperature. Journal of Heterocyclic Chemistry, 2014, 51, E140.	1.4	16
135	Facile and One-Pot Access of 3,3-Bis(indol-3-yl)indolin-2-ones and 2,2-Bis(indol-3-yl)acenaphthylen-1(2 <i>H</i>)-one Derivatives via an Eco-Friendly Pseudo-Multicomponent Reaction at Room Temperature Using Sulfamic Acid as an Organo-Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 2802-2812.	3.2	77
136	Ethyl 6-amino-5-cyano-4-phenyl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate dimethyl sulfoxide monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 0795-0796.	0.2	4
137	Nano-Mgo-Catalyzed One-Pot Synthesis of Phosphonate Ester Functionalized 2-Amino-3-Cyano-4 <i>H</i> -Chromene Scaffolds at Room Temperature. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 873-888.	0.8	38
138	Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-cyano-4 <i>H</i> -pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 411-422.	3.2	264
139	Naturally Occurring Calanolides: An Update on Their Anti-HIV Potential and Total Syntheses. Recent Patents on Biotechnology, 2014, 8, 3-16.	0.4	14
140	Facile synthesis of symmetrical bis(benzhydryl)ethers using p-toluenesulfonyl chloride under solvent-free conditions. Organic and Medicinal Chemistry Letters, 2013, 3, 1.	2.0	29
141	Magnetically separable MnFe2O4 nano-material: an efficient and reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles and the extended synthesis of quinoxalines at room temperature under aerobic conditions. RSC Advances, 2013, 3, 14245.	1.7	62
142	A new pentacyclic triterpene with potent antibacterial activity from Limnophila indica Linn. (Druce). Fìtoterapìâ, 2013, 90, 104-111.	1.1	18
143	Argemone mexicana: Chemical and pharmacological aspects. Revista Brasileira De Farmacognosia, 2013, 23, 559-575.	0.6	90
144	Ethyl 4-anilino-2,6-bis(4-fluorophenyl)-1-phenyl-1,2,5,6-tetrahydropyridine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o299-o300.	0.2	10

#	Article	IF	CITATIONS
145	Methyl 4-(4-fluoroanilino)-1,2,6-tris(4-fluorophenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o373-o374.	0.2	1
146	Ethyl 2,6-bis(4-chlorophenyl)-4-(4-fluoroanilino)-1-(4-fluorophenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o506-o507.	0.2	2
147	Bioactive Natural Products. Journal of Chemistry, 2013, 2013, 1-1.	0.9	3
148	Ethyl 2,6-bis(4-chlorophenyl)-4-(4-methylanilino)-1-(4-methylphenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o454-o455.	0.2	0
149	Pharmacological Properties of Glutamatergic Drugs Targeting NMDA Receptors and their Application in Major Depression. Current Pharmaceutical Design, 2013, 19, 1898-1922.	0.9	64
150	Trimethyl(triphenylmethoxy)silane. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, 0556-0556.	0.2	0
151	Crystal Structure of 3-(β-D-glucopyranosyloxy)-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-1-benzopyran-4-one trihydrate. X-ray Structure Analysis Online, 2012, 28, 15-16.	0.1	2
152	2-Amino-7,7-dimethyl-5-oxo-4-(p-tolyl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2592-o2593.	0.2	2
153	A Comparison Between Catalystâ€Free and ZrOCl ₂ â‹8H ₂ Oâ€Catalyzed Strecker Reactions for the Rapid and Solventâ€Free Oneâ€Pot Synthesis of Racemic αâ€Aminonitrile Derivatives. Asian Journal of Organic Chemistry, 2012, 1, 251-258.	1.3	49
154	Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature. Tetrahedron Letters, 2012, 53, 1479-1484.	0.7	153
155	Natural Products in Drug Discovery: Impacts and Opportunities $\hat{a} \in \mathbb{C}$ An Assessment. , 2011, , 1-199.		17
156	Andrographolide: A Plant-Derived Natural Molecule of Pharmaceutical Promise. , 2011, , 335-368.		2
157	Anti-Diabetic Agents of Natural Origin: A Retrospective Account of Some Promising Chemotypes. , 2011, , 519-599.		1
158	Evaluation of the Antimicrobial Potential of Two Flavonoids Isolated from <i>Limnophila</i> Plants. Chemistry and Biodiversity, 2011, 8, 1139-1151.	1.0	20
159	Stevioside and Related Compounds – Molecules of Pharmaceutical Promise: A Critical Overview. Archiv Der Pharmazie, 2011, 344, 5-19.	2.1	106
160	A New Labdane Diterpene from Rauvolfia Tetraphylla Linn. (Apocynaceae). Journal of Chemical Research, 2011, 35, 678-680.	0.6	14
161	Bioactive Natural Products. , 2011, , .		19
162	A very simple and highly efficient procedure for N-formylation of primary and secondary amines at room temperature under solvent-free conditions. Tetrahedron Letters, 2010, 51, 2319-2322.	0.7	109

GOUTAM BRAHMACHARI

#	Article	IF	CITATIONS
163	Nevadensin: Isolation, chemistry and bioactivity. International Journal of Green Pharmacy, 2010, 4, 213.	0.1	10
164	A new Long-Chain Secondary Alkanediol from the Flowers of <i>Argemone mexicana</i> . Journal of Chemical Research, 2010, 34, 656-657.	0.6	9
165	Metal Acetate/Metal Oxide in Acetic Acid: An Efficient Reagent for the Chemoselective N-Acetylation of Amines under Green Conditions. Journal of Chemical Research, 2010, 34, 288-295.	0.6	37
166	Naturally Occurring Flavanones: An Overview. Natural Product Communications, 2008, 3, 1934578X0800300.	0.2	17
167	Limnophila (Scrophulariaceae): Chemical and Pharmaceutical Aspects. Open Natural Products Journal, 2008, 1, 34-43.	0.8	12
168	X-ray study of weak interactions in two flavonoids. Bulletin of Materials Science, 2007, 30, 469-475.	0.8	9
169	Progress in the Research on Naturally Occurring Flavones and Flavonols: An Overview. Current Organic Chemistry, 2006, 10, 873-898.	0.9	51
170	Swertia (Gentianaceae): Chemical and Pharmacological Aspects. Chemistry and Biodiversity, 2004, 1, 1627-1651.	1.0	97
171	Neem-An Omnipotent Plant: A Retrospection. ChemBioChem, 2004, 5, 408-421.	1.3	196
172	Neem — An Omnipotent Plant: A Retrospection. ChemInform, 2004, 35, no.	0.1	0
173	Triterpenoid Constituents of <i>Borreria Articularis</i> . Journal of the Chinese Chemical Society, 2004, 51, 229-231.	0.8	3
174	A new flavonoid from Limnophila rugosa. Fìtoterapìâ, 2003, 74, 188-190.	1.1	6
175	An Ethylenedioxy Flavonoid Carboxylic Acid from <i>Limnophila Indica</i> . Journal of the Chinese Chemical Society, 2003, 50, 325-328.	0.8	8
176	Triterpenes from Adiantum lunulactum. Fìtoterapìâ, 2002, 73, 363-368.	1.1	16
177	A methylenedioxy flavone from Limnophila indica. Phytochemistry, 1998, 49, 2533-2534.	1.4	16
178	Triterpene from Limnophila heterophylla. Phytochemistry, 1995, 38, 1273-1274.	1.4	5
179	Crystal structure, Hirshfeld surface analysis and molecular docking studies of 3-(sec-butylthio)-4-hydroxy-2H-chromen-2-one. Molecular Crystals and Liquid Crystals, 0, , 1-14.	0.4	0
180	Green synthetic approaches in organophosphorus chemistry: recent developments. Organophosphorus Chemistry, 0, , 418-431.	0.3	0

#	Article	IF	CITATIONS
181	Green synthetic approaches in organophosphorus chemistry: recent developments. Organophosphorus Chemistry, 0, , 425-440.	0.3	0