Goutam Brahmachari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2358812/publications.pdf

Version: 2024-02-01

181 papers

3,521 citations

33 h-index 52 g-index

240 all docs 240 docs citations

times ranked

240

3453 citing authors

#	Article	IF	CITATIONS
1	Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-cyano-4 <i>H</i> pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2. 411-422.	3.2	264
2	Neem-An Omnipotent Plant: A Retrospection. ChemBioChem, 2004, 5, 408-421.	1.3	196
3	Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature. Tetrahedron Letters, 2012, 53, 1479-1484.	0.7	153
4	A very simple and highly efficient procedure for N-formylation of primary and secondary amines at room temperature under solvent-free conditions. Tetrahedron Letters, 2010, 51, 2319-2322.	0.7	109
5	Stevioside and Related Compounds – Molecules of Pharmaceutical Promise: A Critical Overview. Archiv Der Pharmazie, 2011, 344, 5-19.	2.1	106
6	Swertia (Gentianaceae): Chemical and Pharmacological Aspects. Chemistry and Biodiversity, 2004, 1, 1627-1651.	1.0	97
7	Argemone mexicana: Chemical and pharmacological aspects. Revista Brasileira De Farmacognosia, 2013, 23, 559-575.	0.6	90
8	Design for carbon–carbon bond forming reactions under ambient conditions. RSC Advances, 2016, 6, 64676-64725.	1.7	82
9	Facile and One-Pot Access of 3,3-Bis(indol-3-yl)indolin-2-ones and 2,2-Bis(indol-3-yl)acenaphthylen-1(2 <i>H</i>)-one Derivatives via an Eco-Friendly Pseudo-Multicomponent Reaction at Room Temperature Using Sulfamic Acid as an Organo-Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 2802-2812.	3.2	77
10	Room Temperature One-Pot Green Synthesis of Coumarin-3-carboxylic Acids in Water: A Practical Method for the Large-Scale Synthesis. ACS Sustainable Chemistry and Engineering, 2015, 3, 2350-2358.	3.2	75
11	Facile and Chemically Sustainable Oneâ€Pot Synthesis of a Wide Array of Fused <i>O</i> ―and <i>N</i> â€Heterocycles Catalyzed by Trisodium Citrate Dihydrate under Ambient Conditions. Asian Journal of Organic Chemistry, 2016, 5, 271-286.	1.3	71
12	Hippocampal Neurogenesis, Neurotrophic Factors and Depression: Possible Therapeutic Targets?. CNS and Neurological Disorders - Drug Targets, 2015, 13, 1708-1721.	0.8	71
13	l-Proline catalyzed multicomponent one-pot synthesis of gem-diheteroarylmethane derivatives using facile grinding operation under solvent-free conditions at room temperature. RSC Advances, 2014, 4, 7380.	1.7	65
14	Pharmacological Properties of Glutamatergic Drugs Targeting NMDA Receptors and their Application in Major Depression. Current Pharmaceutical Design, 2013, 19, 1898-1922.	0.9	64
15	Magnetically separable MnFe2O4 nano-material: an efficient and reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles and the extended synthesis of quinoxalines at room temperature under aerobic conditions. RSC Advances, 2013, 3, 14245.	1.7	62
16	Ecoâ€friendly, Oneâ€Pot Multicomponent Synthesis of Pyran Annulated Heterocyclic Scaffolds at Room Temperature Using Ammonium or Sodium Formate as Nonâ€toxic Catalyst. Journal of Heterocyclic Chemistry, 2014, 51, E303.	1.4	53
17	Catalyst-Free Organic Synthesis At Room Temperature in Aqueous and Non-Aqueous Media: An Emerging Field of Green Chemistry Practice and Sustainability. Current Green Chemistry, 2015, 2, 274-305.	0.7	52
18	Progress in the Research on Naturally Occurring Flavones and Flavonols: An Overview. Current Organic Chemistry, 2006, 10, 873-898.	0.9	51

#	Article	IF	Citations
19	In vitro evaluation and in silico screening of synthetic acetylcholinesterase inhibitors bearing functionalized piperidine pharmacophores. Bioorganic and Medicinal Chemistry, 2015, 23, 4567-4575.	1.4	50
20	Development of a Water-Mediated and Catalyst-Free Green Protocol for Easy Access to a Huge Array of Diverse and Densely Functionalized Pyrido[2,3- <i>d</i> :6,5- <i>d</i> :倲]dipyrimidines via One-Pot Multicomponent Reaction under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5,9494-9505.	3.2	50
21	A Comparison Between Catalystâ€Free and ZrOCl ₂ â<8H ₂ Oâ€Catalyzed Strecker Reactions for the Rapid and Solventâ€Free Oneâ€Pot Synthesis of Racemic αâ€Aminonitrile Derivatives. Asian Journal of Organic Chemistry, 2012, 1, 251-258.	1.3	49
22	Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity. Organic and Medicinal Chemistry Letters, 2014, 4, 18.	2.0	44
23	Combined experimental (FT-IR, UV–visible spectra, NMR) and theoretical studies on the molecular structure, vibrational spectra, HOMO, LUMO, MESP surfaces, reactivity descriptor and molecular docking of Phomarin. Journal of Molecular Structure, 2015, 1096, 94-101.	1.8	44
24	Ultrasound-Assisted Expedient and Green Synthesis of a New Series of Diversely Functionalized 7-Aryl/heteroarylchromeno $[4,3-\langle i \rangle d \langle i \rangle]$ pyrido $[1,2-\langle i \rangle a \langle i \rangle]$ pyrimidin-6(7 $\langle i \rangle d \langle i \rangle)$ -ones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 11018-11028.	3.2	40
25	Ammonium Chloride Catalysed One-pot Multicomponent Synthesis of 1,8-dioxo-octahydroxanthenes and <i>N</i> -aryl-1,8-dioxodecahydroacridines Under Solvent Free Conditions. Journal of Chemical Research, 2014, 38, 745-750.	0.6	39
26	Sulfamic Acid-Catalyzed One-Pot Room Temperature Synthesis of Biologically Relevant Bis-Lawsone Derivatives. ACS Sustainable Chemistry and Engineering, 2015, 3, 2058-2066.	3.2	39
27	Camphorsulfonic Acid (CSA): An Efficient Organocatalyst for the Synthesis or Derivatization of Heterocycles with Biologically Promising Activities. Current Green Chemistry, 2018, 5, 150-167.	0.7	39
28	Nano-Mgo-Catalyzed One-Pot Synthesis of Phosphonate Ester Functionalized 2-Amino-3-Cyano-4 <i>H</i> -Chromene Scaffolds at Room Temperature. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 873-888.	0.8	38
29	Metal Acetate/Metal Oxide in Acetic Acid: An Efficient Reagent for the Chemoselective N-Acetylation of Amines under Green Conditions. Journal of Chemical Research, 2010, 34, 288-295.	0.6	37
30	Sodium Formateâ€Catalyzed Oneâ€Pot Synthesis of Benzopyranopyrimidines and 4â€Thioâ€substituted 4 <i>H</i> à€Chromenes via Multicomponent Reaction at Room Temperature. Journal of Heterocyclic Chemistry, 2015, 52, 653-659.	1.4	36
31	Selective Pro-Apoptotic Activity of Novel 3,3′-(Aryl/Alkyl-Methylene)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives on Human Cancer Cells via the Induction Reactive Oxygen Species. PLoS ONE, 2016, 11, e0158694.	1.1	36
32	Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity. Journal of Advanced Research, 2018, 9, 51-61.	4.4	36
33	Catalyst-Free One-Pot Three-Component Synthesis of Diversely Substituted 5-Aryl-2-oxo-/thioxo-2,3-dihydro-1 <i>H</i> -benzo[6,7]chromeno[2,3- <i>d</i>)pyrimidine-4,6,11(5 <i>H</i>)-triones Under Ambient Conditions. ACS Omega, 2017, 2, 5025-5035.	S1.6	35
34	Ultrasound-Promoted Expedient and Green Synthesis of Diversely Functionalized 6-Amino-5-((4-hydroxy-2-oxo-2 <i>H</i> -chromen-3-yl)(aryl)methyl)pyrimidine-2,4(1 <i>H</i> ,3 <i>H</i>)-diones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 6369-6380.	3.2	35
35	Ceric ammonium nitrate (CAN): an efficient and eco-friendly catalyst for the one-pot synthesis of alkyl/aryl/heteroaryl-substituted bis(6-aminouracil-5-yl)methanes at room temperature. RSC Advances, 2015, 5, 39263-39269.	1.7	34
36	Visible Light-Induced and Singlet Oxygen-Mediated Photochemical Conversion of 4-Hydroxy-α-benzopyrones to 2-Hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamides/carboxylates Using Rose Bengal as a Photosensitizer. Journal of Organic Chemistry, 2020, 85, 8851-8864.	1.7	31

#	Article	IF	CITATIONS
37	Visible Light-Driven and Singlet Oxygen-Mediated Photochemical Cross-Dehydrogenative C ₃ –H Sulfenylation of 4-Hydroxycoumarins with Thiols Using Rose Bengal as a Photosensitizer. Journal of Organic Chemistry, 2021, 86, 9658-9669.	1.7	30
38	Facile synthesis of symmetrical bis(benzhydryl)ethers using p-toluenesulfonyl chloride under solvent-free conditions. Organic and Medicinal Chemistry Letters, 2013, 3, 1.	2.0	29
39	Green Synthetic Approaches for Biologically Relevant Heterocycles. , 2015, , 1-6.		29
40	Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno $[3\hat{a}\in^2,4\hat{a}\in^2:5,6]$ pyrano $[2,3-d]$ pyrimidines at ambient conditions. Tetrahedron Letters, 2019, 60, 1904-1908.	0.7	29
41	Design of Organic Transformations at Ambient Conditions: Our Sincere Efforts to the Cause of Green Chemistry Practice. Chemical Record, 2016, 16, 98-123.	2.9	26
42	Bismuth Nitrate Catalyzed Oneâ€Pot Multicomponent Synthesis of a Novel Series of Diversely Substituted 1,8â€Dioxodecahydroacridines at Room Temperature [#] . ChemistrySelect, 2017, 2, 3311-3316.	0.7	23
43	Sulfamic Acid-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions: An Overview. Current Organocatalysis, 2016, 3, 93-124.	0.3	23
44	Oneâ€Pot Pseudo Five Component Synthesis of Biologically Relevant 1,2,6â€Triarylâ€4â€arylaminoâ€piperidineâ€3â€eneâ€3―carboxylates: A Decade Update. ChemistrySelect, 201 9892-9910.	l8, 3 .,7	22
45	In vivo therapeutic evaluation of a novel bis-lawsone derivative against tumor following delivery using mesoporous silica nanoparticle based redox-responsive drug delivery system. Materials Science and Engineering C, 2021, 126, 112142.	3.8	22
46	Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon, 2019, 5, e02107.	1.4	21
47	Catalyst―and Additiveâ€Free Decarboxylative Câ€4 Phosphorylation of Coumarinâ€3â€Carboxylic Acids at Ambient Conditions. Advanced Synthesis and Catalysis, 2020, 362, 5411-5421.	2.1	21
48	Catalyst- and solvent-free C _{sp2} â€"H functionalization of 4-hydroxycoumarins <i>via</i> C-3 dehydrogenative aza-coupling under ball-milling. Green Chemistry, 2021, 23, 4762-4770.	4.6	21
49	Evaluation of the Antimicrobial Potential of Two Flavonoids Isolated from <i>Limnophila</i> Plants. Chemistry and Biodiversity, 2011, 8, 1139-1151.	1.0	20
50	Ceric Ammonium Nitrate (CAN): An Efficient and Ecoâ€Friendly Catalyst for Oneâ€Pot Synthesis of Diversely Functionalized Biscoumarins in Aqueous Medium under Ambient Conditions. ChemistrySelect, 2019, 4, 5415-5420.	0.7	20
51	Bioactive Natural Products. , 2011, , .		19
52	A new pentacyclic triterpene with potent antibacterial activity from Limnophila indica Linn. (Druce). Fìtoterapìâ, 2013, 90, 104-111.	1.1	18
53	Naturally Occurring Flavanones: An Overview. Natural Product Communications, 2008, 3, 1934578X0800300.	0.2	17
54	Natural Products in Drug Discovery: Impacts and Opportunities â€" An Assessment. , 2011, , 1-199.		17

#	Article	IF	CITATIONS
55	Facile and Chemically Sustainable Catalystâ€Free Synthesis of Diverse 2â€Arylâ€4â€Alkyl/Arylâ€Pyrano[3,2â€ <i>c</i>]chromenâ€5(4 <i>H</i>)â€Ones by Oneâ€Pot Multicomponent R Room Temperature. ChemistrySelect, 2017, 2, 3695-3702.	Reactions a	at 17
56	Series of Functionalized 5-(2-Arylimidazo[1,2- <i>a</i>]pyridin-3-yl)pyrimidine-2,4(1 <i>H</i> ,3 <i>H</i>)-diones: A Water-Mediated Three-Component Catalyst-Free Protocol Revisited. Journal of Organic Chemistry, 2020, 85, 8405-8414.	1.7	17
57	A methylenedioxy flavone from Limnophila indica. Phytochemistry, 1998, 49, 2533-2534.	1.4	16
58	Triterpenes from Adiantum lunulactum. Fìtoterapìâ, 2002, 73, 363-368.	1.1	16
59	Oneâ€Pot Synthesis of 3â€[(<i>N</i> àêAlkylanilino)(aryl)methyl]indoles via a Transition Metal Assisted Threeâ€Component Condensation at Room Temperature. Journal of Heterocyclic Chemistry, 2014, 51, E140.	1.4	16
60	Synthesis of Biologically Relevant Heterocycles in Aqueous Media. Asian Journal of Organic Chemistry, 2018, 7, 1982-2004.	1.3	16
61	A New Labdane Diterpene from Rauvolfia Tetraphylla Linn. (Apocynaceae). Journal of Chemical Research, 2011, 35, 678-680.	0.6	14
62	Triethylamine â€" A Versatile Organocatalyst in Organic Transformations: A Decade Update. Synthesis, 2018, 50, 4145-4164.	1.2	14
63	Naturally Occurring Calanolides: An Update on Their Anti-HIV Potential and Total Syntheses. Recent Patents on Biotechnology, 2014, 8, 3-16.	0.4	14
64	Room Temperature Metal-Free Synthesis of Aryl/Heteroaryl-Substituted Bis(6-aminouracil-5-yl)methanes Using Sulfamic Acid (NH2SO3H) as an Efficient and Eco-friendly Organo-Catalyst. Current Organocatalysis, 2016, 3, 125-132.	0.3	14
65	Sulfamic Acidâ€Catalyzed Oneâ€Pot Synthesis of a New Series of Biologically Relevant Indoleâ€Uracil Molecular Hybrids in Water at Room Temperature. ChemistrySelect, 2018, 3, 3400-3405.	0.7	13
66	Structural confirmation, single X-ray crystallographic behavior, molecular docking and other physico-chemical properties of gerberinol, a natural dimethyl dicoumarol from Gerbera lanuginosa Benth. (Compositae). Journal of Molecular Structure, 2017, 1136, 214-221.	1.8	12
67	Sodium Formateâ€Catalyzed Oneâ€Pot Synthesis of Functionalized Spiro[indolineâ€3,5′â€pyrido[2,3â€ <i>d</i>]pyrimidine]/Spiro[acenaphthyleneâ€1,5′â€pyrido[2,3â€ <i>d< Derivatives. ChemistrySelect, 2019, 4, 2363-2367.</i>	/ix]â€ pyrir	mi d½ ne]
68	Limnophila (Scrophulariaceae): Chemical and Pharmaceutical Aspects. Open Natural Products Journal, 2008, 1, 34-43.	0.8	12
69	Electrochemical and mechanochemical synthesis of dihydrofuro[3,2- <i>c< i>jchromenones<i>via< i>intramolecular C_{sp3< sub>â€"H<i>cross< i>dehydrogenative oxygenation within warfarin frameworks: an efficient and straightforward dual approach. Green Chemistry, 2022, 24, 2825-2838.</i>}</i></i>	4.6	12
70	Photochemical and electrochemical regioselective cross-dehydrogenative C(sp ²)–H sulfenylation and selenylation of substituted benzo[<i>a</i>]phenazin-5-ols. New Journal of Chemistry, 2022, 46, 13483-13497.	1.4	12
71	Trisodium Citrate Dihydrate-Catalyzed One-Pot Three-component Synthesis of Biologically Relevant Diversely Substituted 2-Amino-3-Cyano-4-(3- Indolyl)-4H-Chromenes under Eco-Friendly Conditions. Current Green Chemistry, 2017, 3, 248-258.	0.7	11
72	A Facile Synthetic Route to Biologically Relevant Substituted 1,4â€Naphthoquinonylâ€2â€oxoindolinylpyrimidines Under Metalâ€Free Organocatalytic Conditions. ChemistrySelect, 2018, 3, 3621-3625.	0.7	11

#	Article	IF	CITATIONS
73	Structural confirmation of biorelevant molecule N-iso-butyl, S-2-nitro-1-phenylethyl dithiocarbamate in gas phase and effect of fluorination. Chemical Physics Letters, 2021, 762, 138124.	1.2	11
74	Nevadensin: Isolation, chemistry and bioactivity. International Journal of Green Pharmacy, 2010, 4, 213.	0.1	10
75	Ethyl 4-anilino-2,6-bis(4-fluorophenyl)-1-phenyl-1,2,5,6-tetrahydropyridine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o299-o300.	0.2	10
76	Green Synthetic Approaches for Biologically Relevant 2-amino-4H-pyrans and 2-amino-4H-pyran-Annulated Heterocycles in Aqueous Mediaâ^—., 2015,, 185-208.		10
77	Camphor-10-Sulfonic Acid (CSA): A Water Compatible Organocatalyst in Organic Transformations. Current Organocatalysis, 2019, 5, 165-181.	0.3	10
78	Facile and Straightforward Synthesis of Racemic Version of Substituted 3-[3-(2-Hydroxyphenyl)-3-oxo-1-arylpropyl]-4-hydroxycoumarins: Easy Access to a Series of Biorelevant Warfarin Analogues. Synthesis, 2022, 54, 451-464.	1.2	10
79	Visible-Light-Promoted Intramolecular C–O Bond Formation via C _{sp³} <i>–</i> H Functionalization: A Straightforward Synthetic Route to Biorelevant Dihydrofuro[3,2- <i>c</i>)chromenone Derivatives. Journal of Organic Chemistry, 2022, 87, 4777-4787.	1.7	10
80	X-ray study of weak interactions in two flavonoids. Bulletin of Materials Science, 2007, 30, 469-475.	0.8	9
81	A new Long-Chain Secondary Alkanediol from the Flowers of <i>Argemone mexicana</i> . Journal of Chemical Research, 2010, 34, 656-657.	0.6	9
82	Oneâ€pot multicomponent synthesis of a new series of curcuminâ€derived 4 <i>H</i> â€pyrans under ambient conditions. Journal of Heterocyclic Chemistry, 2020, 57, 744-750.	1.4	9
83	Synthesis, structural and vibrational spectroscopic investigation of molecules: N-n-butyl, S-2-nitro-1-phenylethyl dithiocarbamate and N-n-butyl, S-2-nitro-1-(4-flurophenyl)ethyl dithiocarbamate. Vibrational Spectroscopy, 2020, 111, 103151.	1.2	9
84	An Ethylenedioxy Flavonoid Carboxylic Acid from <i>Limnophila Indica</i> . Journal of the Chinese Chemical Society, 2003, 50, 325-328.	0.8	8
85	Synthesis, spectroscopic characterization, X-ray analysis and theoretical studies on the spectralÂfeatures (FT-IR, ¹ H-NMR), chemical reactivity, NBO analyses of 2-(4-fluorophenyl)-2-(4-fluorophenylamino)acetonitrile and its docking into IDO enzyme. RSC Advances, 2015, 5, 80967-80977.	1.7	8
86	Synthesis, spectroscopic characterization and crystallographic behavior of a biologically relevant novel indole-fused heterocyclic compound — Experimental and theoretical (DFT) studies. Journal of Molecular Structure, 2016, 1118, 344-355.	1.8	8
87	3,5,7-Trimethoxyphenanthrene-1,4-dione: a new biologically relevant natural phenanthrenequinone derivative from Dioscorea prazeri and studies on its single X-ray crystallographic behavior, molecular docking and other physico-chemical properties. RSC Advances, 2016, 6, 7317-7329.	1.7	8
88	Diversely Functionalized <i>N</i> â€Alkyl/Substituted alkyl, <i>S</i> â€2â€nitroâ€1â€arylethyl Dithiocarbamates: Green Synthesis, Large Scale Application, and Insights in Reaction Mechanism. ChemistrySelect, 2019, 4, 747-751.	0.7	8
89	Conformational and vibrational spectroscopic investigation of N-nâ€'butyl, S-2-nitro-1-(p-tolyl)ethyl dithiocarbamate â€" a bio-relevant sulfur molecule. Journal of Molecular Structure, 2021, 1238, 130450.	1.8	8
90	Visibleâ€Lightâ€Driven and Singlet Oxygenâ€Mediated Synthesis of Biologically Relevant 2â€Hydroxyphenylatedâ€Ĥ±â€Ketoamides Through Decarboxylative Amidation of 4â€Hydroxycoumarins. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	8

#	Article	IF	CITATIONS
91	Structure, spectroscopic analyses (FT-IR and NMR), vibrational study, chemical reactivity and molecular docking study on 3,3'-((4-(trifluoromethyl)phenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione), a promising anticancerous bis-lawsone derivative. Journal of Molecular Structure, 2018, 1154, 596-605.	1.8	7
92	Discovery and Development of Neuroprotective Agents From Natural Products., 2018,, 1-7.		7
93	A new flavonoid from Limnophila rugosa. Fìtoterapìâ, 2003, 74, 188-190.	1.1	6
94	Microwave-assisted Hirao reaction: recent developments. ChemTexts, 2015, 1, 1.	1.0	6
95	Alum (KAl(SO4)2.12H2O) - An Eco-friendly and Versatile Acid-catalyst in Organic Transformations: A Recent Update. Current Green Chemistry, 2019, 6, 12-31.	0.7	6
96	Nano-SiO2@[DABCO(CH2CH2CO2H)]+[Br]â^' as an efficient and recyclable SCILL for water mediated facile synthesis of thiol-substituted N-aryl pentasubstituted pyrroles. Catalysis Communications, 2020, 139, 105966.	1.6	6
97	Ultrasound-promoted Organic Synthesis - A Recent Update. Current Organic Chemistry, 2021, 25, 1539-1565.	0.9	6
98	Synthesis, anticancer activities and experimental-theoretical DNA interaction studies of 2-amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrile. European Journal of Medicinal Chemistry Reports, 2022, 4, 100030.	0.6	6
99	Triterpene from Limnophila heterophylla. Phytochemistry, 1995, 38, 1273-1274.	1.4	5
100	<i>sp</i> 2â€Câ€"H Acetoxylation of Diversely Substituted (<i>E</i>)â€1â€(Arylmethylene)â€2â€phenylhydrazin Using PhI(OAc) ₂ as Acetoxy Source at Ambient Conditions. European Journal of Organic Chemistry, 2019, 2019, 5925-5933.	ies 1,2	5
101	Amelioration of oxidative stress mediated inflammation and apoptosis in pancreatic islets by Lupeol in STZ-induced hyperglycaemic mice. Life Sciences, 2022, 305, 120769.	2.0	5
102	6-Amino-3-methyl-4-(3,4,5-trimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 0875-0876.	0.2	4
103	Ethyl 6-amino-5-cyano-4-phenyl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate dimethyl sulfoxide monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o795-o796.	0.2	4
104	Experimental and quantum chemical studies on poriferasterol – A natural phytosterol isolated from Cassia sophera Linn. (Caesalpiniaceae). Journal of Molecular Structure, 2017, 1143, 184-191.	1.8	4
105	Discovery and development of anti-inflammatory agents from natural products. , 2019, , 1-6.		4
106	Spectroscopic and Structural Investigations on Novel 6-Amino-3-Phenyl-4-(Pyridin-4-yl)-2,4-Dihydropyrano[2,3- <i>c</i>) Pyrazole-5-Carbonitrile by FT-IR, NMR, Docking, and DFT Methods. Polycyclic Aromatic Compounds, 2022, 42, 2288-2304.	1.4	4
107	Ultrasoundâ€Assisted Expeditious Catalystâ€Free Green Approach towards Diastereoselective Synthesis of Spiro[indolineâ€3,2′â€pyrido[2,1â€ <i>b</i>][1,3]oxazine]â€3′,4′â€dicarboxylate Scaffolds. ChemistryS 1263-1270.	el ect , 202	.1,46,
108	Green synthetic approaches in organophosphorus chemistry: recent developments with energy-efficient protocols. Organophosphorus Chemistry, 2016, , 438-491.	0.3	4

#	Article	IF	Citations
109	The druggability of the ATP binding site of glycogen phosphorylase kinase probed by coumarin analogues. Current Research in Chemical Biology, 2022, 2, 100022.	1.4	4
110	Triterpenoid Constituents of <i>Borreria Articularis</i> . Journal of the Chinese Chemical Society, 2004, 51, 229-231.	0.8	3
111	Bioactive Natural Products. Journal of Chemistry, 2013, 2013, 1-1.	0.9	3
112	Lipase-Catalyzed Organic Transformations. , 2017, , 325-346.		3
113	FT-IR, UV–visible, and NMR Spectral Analyses, Molecular Structure, and Properties of Nevadensin Revealed by Density Functional Theory and Molecular Docking. Polycyclic Aromatic Compounds, 2020, 40, 540-552.	1.4	3
114	Green synthetic approaches for biologically relevant 2-amino-4H-pyrans and 2-amino-4H-pyran-annulated heterocycles in aqueous media. , 2021, , 471-504.		3
115	Spectroscopic Investigation of Electron-Releasing Functional Groups Substituted ⟨i>N⟨ i>-⟨i>Butyl, ⟨i>S⟨ i>-2-Nitro-1-Phenylethyl Dithiocarbamate – A DFT Approach. Polycyclic Aromatic Compounds, 2022, 42, 6917-6931.	1.4	3
116	Synthesis, spectroscopic characterization, crystal structure, theoretical (DFT) studies and molecular docking analysis of biologically potent isopropyl 5-chloro-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate. Molecular Crystals and Liquid Crystals, 2022, 738, 106-127.	0.4	3
117	Andrographolide: A Plant-Derived Natural Molecule of Pharmaceutical Promise. , 2011, , 335-368.		2
118	Crystal Structure of 3-(Î ² -D-glucopyranosyloxy)-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-1-benzopyran-4-one trihydrate. X-ray Structure Analysis Online, 2012, 28, 15-16.	0.1	2
119	2-Amino-7,7-dimethyl-5-oxo-4-(p-tolyl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2592-o2593.	0.2	2
120	Ethyl 2,6-bis(4-chlorophenyl)-4-(4-fluoroanilino)-1-(4-fluorophenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o506-o507.	0.2	2
121	2-[4-(Piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidin-2-yl]phenol. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o447-o448.	0.2	2
122	One-pot green synthesis of biologically relevant novel spiro[indolin-2-one-3,4′-pyrano[2,3- <i>c</i>)pyrazoles] and studies on their spectral and X-ray crystallographic behaviors. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 335-343.	0.5	2
123	Synthesis, characterization, and crystal structure of 5,5″-Difluoro-1H,1″H-[3,3′:3′,3″-terindol]-2′(Crystallography Reports, 2016, 61, 225-229.	1â€2H)-or 0.1	ne ₂
124	Andrographolide., 2017,, 1-27.		2
125	Sopherone A and B: Two new biologically relevant dibenzo-α-pyrones from Cassia sophera. Fìtoterapìâ, 2019, 136, 104169.	1.1	2
126	Target prioritization of novel substituted 5-aryl-2-oxo-/thioxo-2,3-dihydro-1H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11(5H)-triones as anticancer agents using in-silico approach. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1415-1424.	2.0	2

#	Article	IF	CITATIONS
127	Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs. Medicinal Chemistry, 2022, 18, 536-543.	0.7	2
128	Metalâ€Free Sequential Amidation and Intramolecular C sp2 â^'H Direct Amination of Coumarinâ€3â€carboxylic Acids under Ambient Conditions: Scope and Mechanistic Insights. ChemistrySelect, 2022, 7, .	0.7	2
129	Structural confirmation and spectroscopic signature of N-Allyl-2â€'hydroxy-5-methyl-3-oxo-2, 3-dihydrobenzofuran-2-carboxamide and its monohydrate cluster. Journal of Molecular Structure, 2022, 1267, 133566.	1.8	2
130	Anti-Diabetic Agents of Natural Origin: A Retrospective Account of Some Promising Chemotypes. , 2011, , 519-599.		1
131	Methyl 4-(4-fluoroanilino)-1,2,6-tris(4-fluorophenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o373-o374.	0.2	1
132	Crystal structure of 5,5′-[(4-fluorophenyl)methylene]bis[6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione]. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1098-o1099.	0.2	1
133	Screening for Low-Cost, Efficient and Eco-Friendly Catalysts in Current Green Chemistry Practice: A Test Case with Sodium Formate. Trends in Green Chemistry, 2015, 1, .	0.2	1
134	Synthesis, characterization, and crystal structure of 2-amino-7-methyl-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c]pyran-3-carbonitrile. Crystallography Reports, 2015, 60, 1126-1130.	0.1	1
135	Carbon – Carbon Bond Forming Reactions at Room Temperature. , 2015, , 1-73.		1
136	Synthesis, characterization, and crystal structure of 2-amino-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c]chromene-3-carbonitrile. Crystallography Reports, 2015, 60, 1142-1146.	0.1	1
137	Synthesis, spectral characterization, and single crystal structure studies of biologically relevant bis-indoline heterocyclic scaffold. Crystallography Reports, 2017, 62, 889-893.	0.1	1
138	Cardioprotective Natural Products: Promises and Hopes â€" An Overview. , 2017, , 1-8.		1
139	Molecular Modeling, Spectroscopic Investigations, and Computational Studies of DMSO solvated $7\hat{a}\in^2$ -amino- $1\hat{a}\in^2$, $3\hat{a}\in^2$ -dimethyl-2, $2\hat{a}\in^2$, $4\hat{a}\in^2$ -trioxo- $1\hat{a}\in^2$, $2\hat{a}\in^2$	3 ,5â€ ²-pyr	ano[2,3-d]py
140	6-Gingerol. , 2019, , 283-295.		1
141	Therapeutics from natural products against neglected tropical diseases: an overview. , 2019, , 1-6.		1
142	Aloe vera: a promising hope against Buruli ulcer., 2019,, 373-383.		1
143	X-Ray Crystal Structure Analysis of Novel 6-Amino-3-Phenyl-4-(Pyridin-4-yl)-2,4-Dihydropyrano[2,3-c]pyrazole-5-Carbonitrile. Crystallography Reports, 2020, 65, 1202-1207.	0.1	1
144	Development of a straightforward and efficient protocol for the one-pot multicomponent synthesis of substituted <i>alpha</i> -aminoallylphosphonates under catalyst-free condition. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 769-779.	0.8	1

#	Article	IF	CITATIONS
145	A selective luminescent probe to monitor cellular ATP: Potential application for in vivo imaging in zebrafish embryo. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 428, 113895.	2.0	1
146	Neem — An Omnipotent Plant: A Retrospection. ChemInform, 2004, 35, no.	0.1	0
147	Trimethyl(triphenylmethoxy)silane. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, 0556-0556.	0.2	0
148	Ethyl 2,6-bis(4-chlorophenyl)-4-(4-methylanilino)-1-(4-methylphenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o454-o455.	0.2	0
149	Crystal structure of 2-(4-nitrophenyl)-2-(phenylamino)propanenitrile and 2-(4-fluorophenylamino)-2-(4-nitrophenyl)propanenitrile. Crystallography Reports, 2014, 59, 1037-1041.	0.1	0
150	Crystal structure of 2-amino-7,7-dimethyl-5-oxo-4-(pyridin-4-yl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile hemihydrate. Crystallography Reports, 2015, 60, 1111-1115.	0.1	0
151	X-ray studies of 2-amino-4-(3-nitrophenyl)-5-oxo-4,5-dihydropyrano[3,2-c] chromene-3-carbonitrile and 2-amino-7,7-dimethyl-4-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. Crystallography Reports, 2015, 60, 1136-1141.	0.1	0
152	Carbon – Phosphorus Bond Forming Reactions at Room Temperature. , 2015, , 273-297.		0
153	Carbon – Nitrogen Bond Forming Reactions at Room Temperature. , 2015, , 75-188.		0
154	Carbon – Oxygen Bond Forming Reactions at Room Temperature. , 2015, , 189-240.		0
155	X-ray studies of 2-amino-5-oxo-4-propyl-4,5-dihydropyrano[3,2-c]chromene-3-carbonitrile. Crystallography Reports, 2015, 60, 865-868.	0.1	0
156	Editorial (Thematic Issue: Recent Advances in Organocatalysis). Current Organocatalysis, 2016, 3, 92-92.	0.3	0
157	Synthesis, spectroscopic characterization, and crystal structure of a novel indoline derivative. Crystallography Reports, 2016, 61, 1055-1060.	0.1	0
158	X-ray crystallography of methyl (6-amino-5-cyano-2-methyl-4-(2-nitrophenyl)-4H-pyran)-3-carboxylate. Crystallography Reports, 2016, 61, 1051-1054.	0.1	0
159	Neuroprotective Natural Products: Clinical Aspects and Modes of Action - An Overview., 2017,, 1-6.		0
160	7,8-Dihydroxy-3-methylisochroman-4-one: A Promising Anti-hypertensive Lead-Molecule from Banana (<i>Musa sapientun</i> L.) Peel., 2017, 319-330.		0
161	Spectral (FT-IR, NMR) Analyses, Molecular Structures, and Chemical Bonding of Two Hexahydroacridine-1,8(2H,5H)-dione Derivatives: A Comparative Quantum Chemical Study. Polycyclic Aromatic Compounds, 2017, 37, 426-441.	1.4	0
162	Editorial: Current Trends in Organic Syntheses: Advances in Green Chemistry Research – Part-II. Current Green Chemistry, 2017, 3, 278-278.	0.7	0

#	Article	IF	CITATIONS
163	Editorial: Current Trends in Organic Syntheses: Advances in Green Chemistry Research - Part-I. Current Green Chemistry, 2017, 3, 194-194.	0.7	O
164	Biosynthetic and Total Synthetic Approaches for (+)-Hyperforin., 2018,, 435-456.		0
165	11. P-Chemistry at ambient conditions: A recent update. , 2018, , 214-231.		O
166	Crystal Structure of Ethyl 6-Amino-5-cyano-4-(4-fluorophenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate. Crystallography Reports, 2018, 63, 388-393.	0.1	0
167	Total synthetic approaches for lucidone: a promising natural lead candidate against dengue infection. , 2019, , 407-412.		O
168	Diethyl (2-Amino-3-Cyano-4H-Chromen-4-yl)Phosphonate and Its Halogenated Derivatives as Effective Drug: A Theoretical and an Experimental Spectroscopic Study. Polycyclic Aromatic Compounds, 2020, , 1-18.	1.4	0
169	Structural, spectroscopic analysis of two hexahydroacridine-1,8(2H,5H)-dione derivatives and identification of drug like properties: Experimental and computational study. Materials Today: Proceedings, 2020, 29, 1050-1054.	0.9	0
170	Self-catalytic techniques for the synthesis of biologically relevant heterocyclic scaffolds at room temperature: a recent update., 2021,, 563-587.		0
171	Crystal structure, Hirshfeld surface analysis, and molecular docking studies of 3,3′-((4-(trifluoromethyl)phenyl) methylene)bis(1-methyl-1 <i>H</i> -indole). Molecular Crystals and Liquid Crystals, 2021, 714, 67-79.	0.4	O
172	Frontiers in Drug Discovery., 2017,,.		0
173	Green synthetic approaches in organophosphorus chemistry: recent developments. Organophosphorus Chemistry, 2019, , 424-439.	0.3	O
174	Green synthetic approaches in organophosphorus chemistry: recent developments. Organophosphorus Chemistry, 2020, , 377-389.	0.3	0
175	Crystal structure, Hirshfeld surface analysis and molecular docking studies of 3-(sec-butylthio)-4-hydroxy-2H-chromen-2-one. Molecular Crystals and Liquid Crystals, 0, , 1-14.	0.4	0
176	Design, Synthesis, Characterization, and Crystallographic Behaviors of Some Biologically Important Chromene-Annulated Spiro-Oxindoles: A Drive to Introspect the Comparative Structural Information. Crystallography Reports, 2020, 65, 1179-1186.	0.1	0
177	Synthesis, Characterization, and Crystal Structure of [3,3':3',3''-Terindolin]-2'-One Bis(dimethyl) Tj ETQq1 1 0.784	1314 rgBT 0.1	/Qverlock 1
178	Studies on the molecular structure of pterocaronol: A new biologically relevant nor-triterpenoid from Peltophorum pterocarpum (Fabaceae). Journal of Molecular Structure, 2022, 1254, 132390.	1.8	0
179	Crystallographic structure, activity prediction, and hydrogen bonding analysis of some CSD-based 3,3'-bis-indole derivatives: A review. European Journal of Chemistry, 2021, 12, 493-501.	0.3	O
180	Green synthetic approaches in organophosphorus chemistry: recent developments. Organophosphorus Chemistry, 0, , 418-431.	0.3	0

#	Article	lF	CITATIONS
181	Green synthetic approaches in organophosphorus chemistry: recent developments. Organophosphorus Chemistry, 0, , 425-440.	0.3	0