
Guilong Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2358135/publications.pdf Version: 2024-02-01

CHILONG CAL

#	Article	IF	CITATIONS
1	Effect of Molecular Symmetry on Fusedâ€Ring Electron Acceptors. Solar Rrl, 2022, 6, 2100797.	3.1	3
2	Simple thiazole-centered oligothiophene donor enables 15.4% efficiency all small molecule organic solar cells. Journal of Materials Chemistry A, 2022, 10, 3009-3017.	5.2	28
3	Pushing the Efficiency of High Openâ€Circuit Voltage Binary Organic Solar Cells by Vertical Morphology Tuning. Advanced Science, 2022, 9, e2200578.	5.6	51
4	Revealing the Sole Impact of Acceptor's Molecular Conformation to Energy Loss and Device Performance of Organic Solar Cells through Positional Isomers. Advanced Science, 2022, 9, e2103428.	5.6	9
5	Symmetrically Fluorinated Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Cored Donor for High-Performance All-Small-Molecule Organic Solar Cells with Improved Active Layer Morphology and Crystallinity. ACS Applied Materials & Interfaces, 2022, 14, 14532-14540.	4.0	10
6	Enhancing Transition Dipole Moments of Heterocyclic Semiconductors via Rational Nitrogen‣ubstitution for Sensitive Near Infrared Detection. Advanced Materials, 2022, 34, e2201600.	11.1	19
7	Organic Photovoltaic Catalyst with Extended Exciton Diffusion for High-Performance Solar Hydrogen Evolution. Journal of the American Chemical Society, 2022, 144, 12747-12755.	6.6	26
8	Effects of π-Bridge on Fused-Ring Electron Acceptor Dimers. ACS Applied Polymer Materials, 2021, 3, 23-29.	2.0	9
9	Nonfullerene electron acceptors with electron-deficient units containing cyano groups for organic solar cells. Materials Chemistry Frontiers, 2021, 5, 5549-5572.	3.2	21
10	Structural regulation of thiophene-fused benzotriazole as a "π-bridge―for A-π-D-π-A type acceptor:P3HT-based OSCs to achieve high efficiency. Journal of Materials Chemistry A, 2021, 9, 6520-6528.	5.2	21
11	An Electron Acceptor Analogue for Lowering Trap Density in Organic Solar Cells. Advanced Materials, 2021, 33, e2008134.	11.1	91
12	Precise Synthesis of Fused Decacyclic Electron Acceptor Isomers for Organic Solar Cells. Solar Rrl, 2021, 5, 2100163.	3.1	8
13	High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Science China Chemistry, 2021, 64, 1380-1388.	4.2	51
14	Asymmetric Glycolated Substitution for Enhanced Permittivity and Ecocompatibility of High-Performance Photovoltaic Electron Acceptor. Jacs Au, 2021, 1, 1733-1742.	3.6	47
15	Effects of Side Chains in Third Components on the Performance of Fused-Ring Electron-Acceptor-Based Ternary Organic Solar Cells. Energy & Fuels, 2021, 35, 19055-19060.	2.5	9
16	Pyrrolo[3,2-b]pyrrole-based fused-ring electron acceptors with strong near-infrared absorption beyond 1000Anm. Dyes and Pigments, 2021, 195, 109705.	2.0	4
17	Boosting charge and thermal transport – role of insulators in stable and efficient n-type polymer transistors. Journal of Materials Chemistry C, 2021, 9, 12281-12290.	2.7	5
18	Uncovering the out-of-plane nanomorphology of organic photovoltaic bulk heterojunction by GTSAXS. Nature Communications, 2021, 12, 6226.	5.8	23

GUILONG CAI

#	Article	IF	CITATIONS
19	Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2020, 142, 18741-18745.	6.6	288
20	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	8.8	188
21	Size Modulation and Heterovalent Doping Facilitated Hybrid Organic and Perovskite Quantum Dot Bulk Heterojunction Solar Cells. ACS Applied Energy Materials, 2020, 3, 11359-11367.	2.5	14
22	Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor. ACS Applied Materials & Interfaces, 2020, 12, 50660-50667.	4.0	16
23	Reducing <scp><i>V</i>_{OC}</scp> loss via structure compatible and high <scp>lowest unoccupied molecular orbital</scp> nonfullerene acceptors for over 17%â€efficiency ternary organic photovoltaics. EcoMat, 2020, 2, e12061.	6.8	23
24	Exploiting Ternary Blends for Improved Photostability in High-Efficiency Organic Solar Cells. ACS Energy Letters, 2020, 5, 1371-1379.	8.8	126
25	Effects of linking units on fused-ring electron acceptor dimers. Journal of Materials Chemistry A, 2020, 8, 13735-13741.	5.2	8
26	Comparison of Linear- and Star-Shaped Fused-Ring Electron Acceptors. , 2019, 1, 367-374.		43
27	Fused octacyclic electron acceptor isomers for organic solar cells. Journal of Materials Chemistry A, 2019, 7, 21432-21437.	5.2	26
28	High-Performance Mid-Bandgap Fused-Pyrene Electron Acceptor. Chemistry of Materials, 2019, 31, 6484-6490.	3.2	40
29	Nickel(0)-Catalyzed Inert C–O Bond Functionalization: Organo Rare-Earth Metal Complex as the Coupling Partner. Organic Letters, 2018, 20, 624-627.	2.4	11
30	A highly active chiral (S,S)-bis(oxazoline) Pd(<scp>ii</scp>) alkyl complex/activator catalytic system for vinyl polymerization of norbornene in air and water. Polymer Chemistry, 2017, 8, 1217-1222.	1.9	13
31	<i>cis</i> â€1,4â€specific carbocationic polymerization and copolymerization of 1,3â€dienes initiated by (S,S)â€bis(oxazolinylphenyl)amine chromium complexes. Journal of Polymer Science Part A, 2017, 55, 1250-1259.	2.5	4
32	Pd-Catalyzed C(sp3)–C(sp2) cross-coupling of Y(CH2SiMe3)3(THF)2 with vinyl bromides and triflates. Organic and Biomolecular Chemistry, 2016, 14, 8702-8706.	1.5	8
33	Palladium-catalyzed C(sp3)–C(sp2) cross-coupling of homoleptic rare-earth metal trialkyl complexes with aryl bromides: efficient synthesis of functionalized benzyltrimethylsilanes. Chemical Communications, 2016, 52, 5425-5427.	2.2	7
34	Sustainable Development of Uranium Industry from the Ideas of Ecological Security. Advanced Materials Research, 2012, 524-527, 2935-2939.	0.3	0
35	Effect of Different Surfactant on Leaching of Uranium in Sandstone Type Ores with Low Permeability. Advanced Materials Research, 0, 634-638, 3335-3338.	0.3	3
36	Supercritical CO ₂ Fluid Leaching of Uranium from Sandstone Type Ores. Advanced Materials Research, 0, 634-638, 3517-3521.	0.3	7

#	Article	IF	CITATIONS
37	Effects of Thieno[3,2-b]thiophene Number on Narrow-Bandgap Fused-Ring Electron Acceptors. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	1