Smriti Mehra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2358001/publications.pdf

Version: 2024-02-01

42 papers

2,642 citations

218381 26 h-index 42 g-index

43 all docs 43 docs citations

43 times ranked

2657 citing authors

#	Article	IF	CITATIONS
1	S100A8/A9 Proteins Mediate Neutrophilic Inflammation and Lung Pathology during Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1137-1146.	2.5	216
2	CXCR5+ T helper cells mediate protective immunity against tuberculosis. Journal of Clinical Investigation, 2013, 123, 712-26.	3.9	203
3	Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nature Communications, 2015, 6, 8533.	5.8	196
4	Genetic Requirements for the Survival of Tubercle Bacilli in Primates. Journal of Infectious Diseases, 2010, 201, 1743-1752.	1.9	159
5	In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of <i>Mycobacterium tuberculosis </i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E62-E71.	3.3	150
6	The DosR Regulon Modulates Adaptive Immunity and Is Essential for <i>Mycobacterium tuberculosis</i> Persistence. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1185-1196.	2.5	142
7	CD4 ⁺ T-cell–independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5636-44.	3.3	123
8	Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus. Journal of Medical Primatology, 2011, 40, 233-243.	0.3	111
9	The immunoregulatory landscape of human tuberculosis granulomas. Nature Immunology, 2022, 23, 318-329.	7.0	110
10	Granuloma Correlates of Protection Against Tuberculosis and Mechanisms of Immune Modulation by Mycobacterium tuberculosis. Journal of Infectious Diseases, 2013, 207, 1115-1127.	1.9	104
11	Transcriptional Reprogramming in Nonhuman Primate (Rhesus Macaque) Tuberculosis Granulomas. PLoS ONE, 2010, 5, e12266.	1.1	98
12	The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host and Microbe, 2021, 29, 165-178.e8.	5.1	98
13	Aerosol Vaccination with AERAS-402 Elicits Robust Cellular Immune Responses in the Lungs of Rhesus Macaques but Fails To Protect against High-Dose <i>Mycobacterium tuberculosis</i> Journal of Immunology, 2014, 193, 1799-1811.	0.4	87
14	Functional Genomics Reveals Extended Roles of the $\langle i \rangle$ Mycobacterium tuberculosis $\langle i \rangle$ Stress Response Factor $ f \langle \sup \rangle H \langle \sup \rangle$. Journal of Bacteriology, 2009, 191, 3965-3980.	1.0	78
15	The Mycobacterium tuberculosis Stress Response Factor SigH Is Required for Bacterial Burden as Well as Immunopathology in Primate Lungs. Journal of Infectious Diseases, 2012, 205, 1203-1213.	1.9	74
16	LAG3 Expression in Active Mycobacterium tuberculosis Infections. American Journal of Pathology, 2015, 185, 820-833.	1.9	70
17	The Stress-Response Factor SigH Modulates the Interaction between Mycobacterium tuberculosis and Host Phagocytes. PLoS ONE, 2012, 7, e28958.	1.1	57
18	Robust IgM responses following intravenous vaccination with Bacille Calmette–Guérin associate with prevention of Mycobacterium tuberculosis infection in macaques. Nature Immunology, 2021, 22, 1515-1523.	7.0	55

#	Article	IF	Citations
19	Immune correlates of tuberculosis disease and risk translate across species. Science Translational Medicine, 2020, 12, .	5.8	52
20	Hypoxia Sensing and Persistence Genes Are Expressed during the Intragranulomatous Survival of <i>Mycobacterium tuberculosis</i> . American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 637-647.	1.4	50
21	High Turnover of Tissue Macrophages Contributes to Tuberculosis Reactivation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. Journal of Infectious Diseases, 2018, 217, 1865-1874.	1.9	44
22	The Mycobacterium tuberculosis Rv2745c Plays an Important Role in Responding to Redox Stress. PLoS ONE, 2014, 9, e93604.	1.1	39
23	The TB-specific CD4+ T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans. Tuberculosis, 2015, 95, 722-735.	0.8	39
24	Chronic Immune Activation in TB/HIV Co-infection. Trends in Microbiology, 2020, 28, 619-632.	3.5	33
25	Antiretroviral therapy does not reduce tuberculosis reactivation in a tuberculosis-HIV coinfection model. Journal of Clinical Investigation, 2020, 130, 5171-5179.	3.9	31
26	Role of TNF in the Altered Interaction of Dormant Mycobacterium tuberculosis with Host Macrophages. PLoS ONE, 2014, 9, e95220.	1.1	30
27	Mycobacterium tuberculosisMT2816 Encodes a Key Stressâ€Response Regulator. Journal of Infectious Diseases, 2010, 202, 943-953.	1.9	28
28	In-Vivo Gene Signatures of Mycobacterium tuberculosis in C3HeB/FeJ Mice. PLoS ONE, 2015, 10, e0135208.	1.1	24
29	Humoral and lung immune responses to Mycobacterium tuberculosis infection in a primate model of protection. Trials in Vaccinology, 2014, 3, 47-51.	1.2	20
30	Isoniazid and Rifapentine Treatment Eradicates Persistent Mycobacterium tuberculosis in Macaques. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 469-477.	2.5	15
31	Mycobacterium tuberculosis HN878 Infection Induces Human-Like B-Cell Follicles in Mice. Journal of Infectious Diseases, 2020, 221, 1636-1646.	1.9	15
32	Identification of biomarkers for tuberculosis susceptibility via integrated analysis of gene expression and longitudinal clinical data. Frontiers in Genetics, 2014, 5, 240.	1.1	14
33	Nonpathologic Infection of Macaques by an Attenuated Mycobacterial Vaccine Is Not Reactivated in the Setting of HIV Co-Infection. American Journal of Pathology, 2017, 187, 2811-2820.	1.9	12
34	Faithful Experimental Models of Human Mycobacterium Tuberculosis Infection. Mycobacterial Diseases: Tuberculosis & Leprosy, 2012, 02, .	0.1	12
35	A tuberculosis ontology for host systems biology. Tuberculosis, 2015, 95, 570-574.	0.8	11
36	Sequencing-relative to hybridization-based transcriptomics approaches better define Mycobacterium tuberculosis stress-response regulons. Tuberculosis, 2016, 101, S9-S17.	0.8	10

#	Article	IF	CITATIONS
37	Abnormal Tryptophan Metabolism in HIV and Mycobacterium tuberculosis Infection. Frontiers in Microbiology, 2021, 12, 666227.	1.5	9
38	Antiretroviral therapy timing impacts latent tuberculosis infection reactivation in a Mycobacterium tuberculosis/SIV coinfection model. Journal of Clinical Investigation, 2022, 132, .	3.9	9
39	Effect of Mycobacterium tuberculosis Enhancement of Macrophage P-Glycoprotein Expression and Activity on Intracellular Survival During Antituberculosis Drug Treatment. Journal of Infectious Diseases, 2019, 220, 1989-1998.	1.9	7
40	sncRNA-1 Is a Small Noncoding RNA Produced by Mycobacterium tuberculosis in Infected Cells That Positively Regulates Genes Coupled to Oleic Acid Biosynthesis. Frontiers in Microbiology, 2020, 11, 1631.	1.5	3
41	Peripheral Blood Markers Correlate with the Progression of Active Tuberculosis Relative to Latent Control of Mycobacterium tuberculosis Infection in Macaques. Pathogens, 2022, 11, 544.	1.2	3
42	SOCS3 and ILâ€10 antiâ€inflammatory activity in Lyme disease. FASEB Journal, 2008, 22, 860.17.	0.2	1