Edward F Valeev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2357877/publications.pdf

Version: 2024-02-01

111 11,063 41 103 g-index

113 113 113 113 8494

113 113 113 8494 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Estimates of the Ab Initio Limit for Ï€â^Ï€ Interactions:  The Benzene Dimer. Journal of the American Chemical Society, 2002, 124, 10887-10893.	6.6	1,229
2	<scp>Psi4</scp> 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. Journal of Chemical Theory and Computation, 2017, 13, 3185-3197.	2.3	961
3	Psi4: an openâ€source <i>ab initio</i> electronic structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 556-565.	6.2	838
4	Effect of Electronic Polarization on Charge-Transport Parameters in Molecular Organic Semiconductors. Journal of the American Chemical Society, 2006, 128, 9882-9886.	6.6	756
5	Sparse mapsâ€"A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. Journal of Chemical Physics, 2016, 144, 024109.	1.2	740
6	HEAT: High accuracy extrapolatedab initiothermochemistry. Journal of Chemical Physics, 2004, 121, 11599-11613.	1.2	691
7	Explicitly Correlated R12/F12 Methods for Electronic Structure. Chemical Reviews, 2012, 112, 75-107.	23.0	408
8	R12 methods in explicitly correlated molecular electronic structure theory. International Reviews in Physical Chemistry, 2006, 25, 427-468.	0.9	384
9	Improving on the resolution of the identity in linear R12 ab initio theories. Chemical Physics Letters, 2004, 395, 190-195.	1.2	348
10	A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. Journal of Chemical Physics, 2017, 146, 164105.	1.2	285
11	Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated <i>ab initio</i> Methods?. Journal of Chemical Theory and Computation, 2011, 7, 33-43.	2.3	274
12	Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses. Journal of Chemical Physics, 2002, 116, 690-701.	1.2	262
13	PSI3: An open-source Ab Initio electronic structure package. Journal of Computational Chemistry, 2007, 28, 1610-1616.	1.5	258
14	Sparse mapsâ€"A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. Journal of Chemical Physics, 2015, 143, 034108.	1.2	211
15	SparseMapsâ€"A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. Journal of Chemical Physics, 2016, 144, 094111.	1.2	131
16	The diagonal Born–Oppenheimer correction beyond the Hartree–Fock approximation. Journal of Chemical Physics, 2003, 118, 3921-3927.	1.2	122
17	SparseMapsâ€"A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals. Journal of Chemical Physics, 2017, 146, 174108.	1,2	122
18	Analysis of the errors in explicitly correlated electronic structure theory. Physical Chemistry Chemical Physics, 2005, 7, 2710.	1.3	120

#	Article	IF	Citations
19	Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12 \hat{A}^- model. Journal of Chemical Physics, 2008, 128, 244113.	1.2	113
20	CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule. Journal of Chemical Physics, 2006, 125, 204307.	1.2	112
21	Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation. Physical Chemistry Chemical Physics, 2008, 10, 106-113.	1.3	106
22	The protonated water dimer: Brueckner methods remove the spurious C1 symmetry minimum. Journal of Chemical Physics, 1998, 108, 7197-7201.	1.2	102
23	SparseMapsâ€"A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals. Journal of Chemical Physics, 2016, 144, 144109.	1.2	98
24	Explicitly correlated coupled-cluster singles and doubles method based on complete diagrammatic equations. Journal of Chemical Physics, 2008, 129, 071101.	1,2	94
25	Adaptive Steered Molecular Dynamics of the Long-Distance Unfolding of Neuropeptide Y. Journal of Chemical Theory and Computation, 2010, 6, 3026-3038.	2.3	88
26	Variational formulation of perturbative explicitly-correlated coupled-cluster methods. Physical Chemistry Chemical Physics, 2008, 10, 3410.	1.3	85
27	The electron and nuclear orbitals model: current challenges and future prospects. Molecular Physics, 2004, 102, 111-123.	0.8	84
28	Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment. Journal of Chemical Theory and Computation, 2012, 8, 3175-3186.	2.3	79
29	Equations of explicitly-correlated coupled-cluster methods. Physical Chemistry Chemical Physics, 2008, 10, 3358.	1.3	77
30	Higher-order explicitly correlated coupled-cluster methods. Journal of Chemical Physics, 2009, 130, 054101.	1,2	73
31	MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation. SIAM Journal of Scientific Computing, 2016, 38, S123-S142.	1.3	72
32	On the accuracy limits of orbital expansion methods: Explicit effects ofk-functions on atomic and molecular energies. Journal of Chemical Physics, 2003, 118, 8594-8610.	1,2	70
33	Universal perturbative explicitly correlated basis set incompleteness correction. Journal of Chemical Physics, 2009, 131, 171103.	1.2	70
34	Second-order MÃ,llerâ€"Plesset theory with linear R12 terms (MP2-R12) revisited: Auxiliary basis set method and massively parallel implementation. Journal of Chemical Physics, 2004, 121, 1214-1227.	1,2	67
35	The Chronus Quantum software package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1436.	6.2	66
36	Combining explicitly correlated R12 and Gaussian geminal electronic structure theories. Journal of Chemical Physics, 2006, 125, 244106.	1,2	59

#	Article	IF	Citations
37	Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: Application to H2O, N2H+, NO2+, and C2H2. Journal of Chemical Physics, 2010, 133, 244108.	1.2	55
38	Massively Parallel Implementation of Explicitly Correlated Coupled-Cluster Singles and Doubles Using TiledArray Framework. Journal of Physical Chemistry A, 2016, 120, 10231-10244.	1.1	50
39	The second-order Møller–Plesset limit for the barrier to linearity of water. Journal of Chemical Physics, 2001, 114, 2875-2878.	1.2	49
40	Evaluation of two-electron integrals for explicit r12 theories. Journal of Chemical Physics, 2000, 113, 3990-3995.	1.2	44
41	Quantum simulation of electronic structure with a transcorrelated Hamiltonian: improved accuracy with a smaller footprint on the quantum computer. Physical Chemistry Chemical Physics, 2020, 22, 24270-24281.	1.3	43
42	Low-order tensor approximations for electronic wave functions: Hartree–Fock method with guaranteed precision. Journal of Chemical Physics, 2011, 134, 104104.	1.2	42
43	Computing many-body wave functions with guaranteed precision: The first-order Møller-Plesset wave function for the ground state of helium atom. Journal of Chemical Physics, 2012, 137, 104103.	1.2	40
44	From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. Chemical Reviews, 2021, 121, 4962-4998.	23.0	39
45	Efficient implementation of the analytic second derivatives of Hartree–Fock and hybrid DFT energies: a detailed analysis of different approximations. Molecular Physics, 2015, 113, 1961-1977.	0.8	38
46	Coupledâ€cluster singles, doubles and perturbative triples with density fitting approximation for massively parallel heterogeneous platforms. International Journal of Quantum Chemistry, 2019, 119, e25894.	1.0	37
47	Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple. Journal of Chemical Physics, 2014, 141, 054106.	1.2	36
48	Explicitly correlated combined coupled-cluster and perturbation methods. Journal of Chemical Physics, 2009, 131, 044118.	1.2	33
49	What is the most efficient way to reach the canonical MP2 basis set limit?. Molecular Physics, 2013, 111, 2653-2662.	0.8	33
50	Semi-exact concentric atomic density fitting: Reduced cost and increased accuracy compared to standard density fitting. Journal of Chemical Physics, 2014, 140, 064109.	1.2	33
51	A Comparison of One-Particle Basis Set Completeness, Higher-Order Electron Correlation, Relativistic Effects, and Adiabatic Corrections for Spectroscopic Constants of BH, CH+, and NHâ€. Journal of Physical Chemistry A, 2004, 108, 3068-3075.	1.1	32
52	State-Averaged Pair Natural Orbitals for Excited States: A Route toward Efficient Equation of Motion Coupled-Cluster. Journal of Chemical Theory and Computation, 2018, 14, 5597-5607.	2.3	32
53	Computing molecular correlation energies with guaranteed precision. Journal of Chemical Physics, 2013, 139, 114106.	1.2	31
54	Perturbative correction for the basis set incompleteness error of complete-active-space self-consistent field. Journal of Chemical Physics, 2010, 133, 174126.	1,2	30

#	Article	IF	CITATIONS
55	\$hbox{SF-[2]}_{ext{R12}}\$ SF-[2] R12: A spin-adapted explicitly correlated method applicable to arbitrary electronic states. Journal of Chemical Physics, 2011, 135, 214105.	1.2	29
56	Three- versus four-coordinate phosphorus in the gas phase and inâ€% for phosphine oxide and phosphinous acid. Journal of Chemical Physics, 2002, 116, 112.	∘solµtion: 7	Treacherous r
57	(1,2-Diaminoethane-1,2-diyl)bis(N-methylpyridinium) Salts as a Prospective Platform for Designing Recyclable Prolinamide-Based Organocatalysts. Journal of Organic Chemistry, 2015, 80, 9570-9577.	1.7	26
58	C60complexes with dianthracene and triptycene: synthesis and crystal structures. Synthetic Metals, 1999, 103, 2364-2365.	2.1	25
59	Massively Parallel Quantum Chemistry: A high-performance research platform for electronic structure. Journal of Chemical Physics, 2020, 153, 044120.	1.2	25
60	Chapter 6 Explicitly Correlated Coupled-Cluster Methods. Annual Reports in Computational Chemistry, 2009, , 131-148.	0.9	24
61	A novel interpretation of reduced density matrix and cumulant for electronic structure theories. Journal of Chemical Physics, 2011, 134, 214109.	1.2	24
62	Efficient Four-Component Dirac–Coulomb–Gaunt Hartree–Fock in the Pauli Spinor Representation. Journal of Chemical Theory and Computation, 2021, 17, 3388-3402.	2.3	24
63	Explicitly correlated coupled cluster method for accurate treatment of open-shell molecules with hundreds of atoms. Journal of Chemical Physics, 2020, 153, 094105.	1.2	22
64	Components for integral evaluation in quantum chemistry. Journal of Computational Chemistry, 2008, 29, 562-577.	1.5	21
65	Many-Body Quantum Chemistry on Massively Parallel Computers. Chemical Reviews, 2021, 121, 1203-1231.	23.0	21
66	Is the adiabatic approximation sufficient to account for the post-Born–Oppenheimer effects on molecular electric dipole moments?. Molecular Physics, 2009, 107, 1153-1159.	0.8	20
67	Scalar relativistic explicitly correlated R12 methods. Journal of Chemical Physics, 2010, 132, 214104.	1.2	20
68	Clustered Low-Rank Tensor Format: Introduction and Application to Fast Construction of Hartree–Fock Exchange. Journal of Chemical Theory and Computation, 2016, 12, 5868-5880.	2.3	20
69	Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12). Journal of Chemical Physics, 2017, 147, 064110.	1.2	20
70	The Equilibrium Geometry, Harmonic Vibrational Frequencies, and Estimated ab Initio Limit for the Barrier to Planarity of the Ethylene Radical Cation. Journal of Physical Chemistry A, 2002, 106, 2671-2675.	1.1	18
71	Communication: Stochastic evaluation of explicitly correlated second-order many-body perturbation energy. Journal of Chemical Physics, 2014, 140, 031101.	1.2	18
72	Scalable task-based algorithm for multiplication of block-rank-sparse matrices. , 2015, , .		18

#	Article	IF	CITATIONS
73	A tight distance-dependent estimator for screening three-center Coulomb integrals over Gaussian basis functions. Journal of Chemical Physics, 2015, 142, 154106.	1.2	18
74	Developing a Computational Chemistry Framework for the Exascale Era. Computing in Science and Engineering, 2019, 21, 48-58.	1.2	16
75	Explicitly correlated second-order MÃ,ller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. Journal of Chemical Physics, 2016, 144, 204112.	1.2	15
76	Direct determination of optimal pair-natural orbitals in a real-space representation: The second-order Moller–Plesset energy. Journal of Chemical Physics, 2020, 152, 074105.	1.2	15
77	Interlocking Triplet Electronic States of Isocyanic Acid:Â Sources of Nonadiabatic Photofragmentation Dynamicsâ€. Journal of Physical Chemistry A, 2001, 105, 2716-2730.	1.1	14
78	Computation of precise two-electron correlation energies with imprecise Hartree–Fock orbitals. Chemical Physics Letters, 2006, 418, 333-336.	1.2	13
79	Monte Carlo explicitly correlated second-order many-body perturbation theory. Journal of Chemical Physics, 2016, 145, 154115.	1.2	13
80	Communication: Explicitly correlated formalism for second-order single-particle Green's function. Journal of Chemical Physics, 2017, 147, 121101.	1.2	13
81	Optimized Pair Natural Orbitals for the Coupled Cluster Methods. Journal of Chemical Theory and Computation, 2018, 14, 4581-4589.	2.3	13
82	Can the distinguishable cluster approximation be improved systematically by including connected triples?. Journal of Chemical Physics, 2019, 151, .	1.2	13
83	Enabling new capabilities and insights from quantum chemistry by using component architectures. Journal of Physics: Conference Series, 2006, 46, 220-228.	0.3	12
84	A New Class of Supramolecular Wires. Journal of Physical Chemistry C, 2007, 111, 18912-18916.	1.5	12
85	Efficient evaluation of exact exchange for periodic systems via concentric atomic density fitting. Journal of Chemical Physics, 2020, 153, 124116.	1.2	12
86	A series of new molecular complexes C60(S4N4)2 â^ x(C6H6)x: Synthesis, x-ray study of crystal structure and structural disorder. Journal of Physics and Chemistry of Solids, 1997, 58, 1865-1867.	1.9	11
87	Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals. Journal of Physical Chemistry A, 2021, 125, 4258-4265.	1.1	11
88	The not-so-peculiar case of calcium oxide: a weakness in atomic natural orbital basis sets for calcium. Molecular Physics, 2000, 98, 1227-1231.	0.8	10
89	Assessment of Perturbative Explicitly Correlated Methods for Prototypes of Multiconfiguration Electronic Structure. Journal of Chemical Theory and Computation, 2014, 10, 90-101.	2.3	10
90	The elementary reaction of quartet methylidyne (CH) with methane. Molecular Physics, 1996, 89, 1695-1705.	0.8	9

#	Article	IF	Citations
91	Robust Approximation of Tensor Networks: Application to Grid-Free Tensor Factorization of the Coulomb Interaction. Journal of Chemical Theory and Computation, 2021, 17, 2217-2230.	2.3	8
92	Effective Utilization of Tensor Symmetry in Operation Optimization of Tensor Contraction Expressions. Procedia Computer Science, 2012, 9, 412-421.	1.2	7
93	EXAFS study of the M0.5(OH)x(H2O)yMoS2 intercalated complexes. Physica B: Condensed Matter, 1995, 208-209, 569-570.	1.3	6
94	Is F3+ viable? A high-level ab initio comparison of F3+ and Cl3+. Journal of Chemical Physics, 1998, 109, 1772-1780.	1.2	6
95	Anatomy of molecular properties evaluated with explicitly correlated electronic wave functions. Molecular Physics, 2016, 114, 2894-2909.	0.8	6
96	Explicitly correlated renormalized second-order Green's function for accurate ionization potentials of closed-shell molecules. Journal of Chemical Physics, 2019, 150, 214103.	1.2	6
97	The Template Task Graph (TTG) - an emerging practical dataflow programming paradigm for scientific simulation at extreme scale. , 2020, , .		6
98	Fast construction of the exchange operator in an atom-centred basis with concentric atomic density fitting. Molecular Physics, 2017, 115, 2065-2076.	0.8	5
99	Combined Relativistic Ab Initio Multireference and Experimental Study of the Electronic Structure of Terbium Luminescent Compound. Journal of Physical Chemistry A, 2020, 124, 82-89.	1.1	5
100	Chapter 2 Explicitly Correlated Approaches for Electronic Structure Computations. Annual Reports in Computational Chemistry, 2006, 2, 19-33.	0.9	4
101	Distributed-memory multi-GPU block-sparse tensor contraction for electronic structure., 2021,,.		4
102	Hybrid one-electron/many-electron methods for ionized states of molecular clusters. Physical Chemistry Chemical Physics, 2012, 14, 7863.	1.3	3
103	Spin-Free [2] _{R12} Basis Set Incompleteness Correction to the Local Multireference Configuration Interaction and the Local Multireference Average Coupled Pair Functional Methods. Journal of Chemical Theory and Computation, 2016, 12, 3176-3184.	2.3	3
104	An Introduction to High Performance Computing and Its Intersection with Advances in Modeling Rare Earth Elements and Actinides. ACS Symposium Series, 0, , 3-53.	0.5	3
105	Comment on "A tight distance-dependent estimator for screening three-center Coulomb integrals over Gaussian basis functions―[J. Chem. Phys. 142, 154106 (2015)]. Journal of Chemical Physics, 2020, 153, 097101.	1.2	2
106	Robust Pipek–Mezey Orbital Localization in Periodic Solids. Journal of Chemical Theory and Computation, 2021, 17, 7406-7415.	2.3	2
107	Generalized Flow-Graph Programming Using Template Task-Graphs: Initial Implementation and Assessment. , 2022, , .		2
108	Molecular Resonance Raman and Rayleigh Scattering Stimulated by a Short Laser Pulse. Journal of Statistical Physics, 2014, 154, 522-542.	0.5	1

#	Article	IF	CITATIONS
109	Poster receptionComponent architectures for quantum chemistry., 2006,,.		0
110	Computational Interstellar Chemistry. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 21-30.	0.3	0
111	Eclectic Electron-Correlation Methods. Challenges and Advances in Computational Chemistry and Physics, 2010, , 191-217.	0.6	O