Stefanie Sergeant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2357615/publications.pdf

Version: 2024-02-01

1478505 1720034 7 97 6 7 citations h-index g-index papers 7 7 7 165 docs citations times ranked citing authors all docs

#	ARTICLE	IF	CITATIONS
1	Understanding Selectivity Loss Mechanisms in Selective Material Deposition by Area Deactivation on 10 nm Cu/SiO ₂ Patterns. ACS Applied Electronic Materials, 2022, 4, 1703-1714.	4.3	9
2	Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics. ACS Nano, 2021, 15, 9482-9494.	14.6	26
3	Nanomechanical Characterization of Organic Surface Passivation Films on 50 nm Patterns during Area-Selective Deposition. ACS Applied Electronic Materials, 2021, 3, 2622-2630.	4.3	7
4	Importance of the substrate's surface evolution during the MOVPE growth of 2D-transition metal dichalcogenides. Nanotechnology, 2020, 31, 125604.	2.6	15
5	Area-Selective Atomic Layer Deposition of TiN Using Trimethoxy(octadecyl)silane as a Passivation Layer. Langmuir, 2020, 36, 13144-13154.	3.5	7
6	On the van der Waals Epitaxy of Homo-/Heterostructures of Transition Metal Dichalcogenides. ACS Applied Materials & Dic	8.0	22
7	Fundamental limitation of van der Waals homoepitaxy by stacking fault formation in WSe ₂ . 2D Materials, 2020, 7, 025027.	4.4	11