
Xiaoyuan Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2357269/publications.pdf Version: 2024-02-01

XIAOVIIAN II

#	Article	IF	CITATIONS
1	Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. Advanced Materials, 2017, 29, 1603276.	21.0	721
2	Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chemical Society Reviews, 2019, 48, 2891-2912.	38.1	482
3	Polydopamineâ€Modified Black Phosphorous Nanocapsule with Enhanced Stability and Photothermal Performance for Tumor Multimodal Treatments. Advanced Science, 2018, 5, 1800510.	11.2	460
4	Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application To Protect Brain from Injury in Ischemic Stroke. Journal of the American Chemical Society, 2017, 139, 856-862.	13.7	404
5	Large-Scale Aqueous Synthesis of Fluorescent and Biocompatible Silicon Nanoparticles and Their Use as Highly Photostable Biological Probes. Journal of the American Chemical Society, 2013, 135, 8350-8356.	13.7	386
6	ROSâ€Responsive Polyprodrug Nanoparticles for Triggered Drug Delivery and Effective Cancer Therapy. Advanced Materials, 2017, 29, 1700141.	21.0	370
7	A Novel Topâ€Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imagingâ€Guided Cancer Therapy. Advanced Materials, 2018, 30, e1803031.	21.0	318
8	Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	21.0	314
9	Intracellular Mechanistic Understanding of 2D MoS ₂ Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. ACS Nano, 2018, 12, 2922-2938.	14.6	188
10	Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes <i>p53</i> -deficient cancers to mTOR inhibition. Science Translational Medicine, 2019, 11, .	12.4	177
11	Engineering Multifunctional RNAi Nanomedicine To Concurrently Target Cancer Hallmarks for Combinatorial Therapy. Angewandte Chemie - International Edition, 2018, 57, 1510-1513.	13.8	168
12	Dual-response oxygen-generating MnO2 nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy. Chemical Engineering Journal, 2020, 389, 124494.	12.7	166
13	Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. Matter, 2020, 2, 297-322.	10.0	165
14	ROS-Mediated Selective Killing Effect of Black Phosphorus: Mechanistic Understanding and Its Guidance for Safe Biomedical Applications. Nano Letters, 2020, 20, 3943-3955.	9.1	158
15	Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications, 2021, 12, 4777.	12.8	144
16	Tethering of Nicotinamide Adenine Dinucleotide Inside Hollow Nanofibers for High-Yield Synthesis of Methanol from Carbon Dioxide Catalyzed by Coencapsulated Multienzymes. ACS Nano, 2015, 9, 4600-4610.	14.6	142
17	Synthesis of Ultrathin Biotite Nanosheets as an Intelligent Theranostic Platform for Combination Cancer Therapy. Advanced Science, 2019, 6, 1901211.	11.2	130
18	Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy. Nano Letters, 2017, 17, 4427-4435.	9.1	119

XIAOYUAN JI

#	Article	IF	CITATIONS
19	Biomimetic Preparation and Dual-Color Bioimaging of Fluorescent Silicon Nanoparticles. Journal of the American Chemical Society, 2015, 137, 14726-14732.	13.7	111
20	Highly Fluorescent, Photostable, and Ultrasmall Silicon Drug Nanocarriers for Longâ€Term Tumor Cell Tracking and Inâ€Vivo Cancer Therapy. Advanced Materials, 2015, 27, 1029-1034.	21.0	105
21	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. Angewandte Chemie - International Edition, 2019, 58, 13405-13410.	13.8	102
22	The Emergence and Evolution of Borophene. Advanced Science, 2021, 8, 2001801.	11.2	98
23	Tantalum Sulfide Nanosheets as a Theranostic Nanoplatform for Computed Tomography Imagingâ€Guided Combinatorial Chemoâ€Photothermal Therapy. Advanced Functional Materials, 2017, 27, 1703261.	14.9	89
24	Z‣cheme Heterojunction Functionalized Pyrite Nanosheets for Modulating Tumor Microenvironment and Strengthening Photo/Chemodynamic Therapeutic Effects. Advanced Functional Materials, 2020, 30, 1906466.	14.9	89
25	Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery <i>In Vitro</i> and <i>In Vivo</i> . Theranostics, 2017, 7, 1990-2002.	10.0	81
26	Silicon Nanomaterials for Biosensing and Bioimaging Analysis. Frontiers in Chemistry, 2018, 6, 38.	3.6	80
27	Peptide-Conjugated Fluorescent Silicon Nanoparticles Enabling Simultaneous Tracking and Specific Destruction of Cancer Cells. Analytical Chemistry, 2015, 87, 6718-6723.	6.5	71
28	An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 323-333.	10.3	71
29	Integration of Artificial Photosynthesis System for Enhanced Electronic Energyâ€Transfer Efficacy: A Case Study for Solarâ€Energy Driven Bioconversion of Carbon Dioxide to Methanol. Small, 2016, 12, 4753-4762.	10.0	70
30	SnTe@MnO ₂ â€SP Nanosheet–Based Intelligent Nanoplatform for Second Nearâ€Infrared Light–Mediated Cancer Theranostics. Advanced Functional Materials, 2019, 29, 1903791.	14.9	69
31	Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: redesign of artificial cells. Journal of Materials Chemistry B, 2014, 2, 181-190.	5.8	64
32	Doxorubicin-loaded silicon nanowires for the treatment of drug-resistant cancer cells. Biomaterials, 2014, 35, 5188-5195.	11.4	64
33	Epigenetic Remodeling Hydrogel Patches for Multidrugâ€Resistant Tripleâ€Negative Breast Cancer. Advanced Materials, 2021, 33, e2100949.	21.0	61
34	Fluorescent Silicon Nanorods-Based Ratiometric Sensors for Long-Term and Real-Time Measurements of Intracellular pH in Live Cells. Analytical Chemistry, 2017, 89, 12152-12159.	6.5	51
35	Heterojunction Nanomedicine. Advanced Science, 2022, 9, e2105747.	11.2	51
36	Porphyrin/SiO ₂ /Cp*Rh(bpy)Cl Hybrid Nanoparticles Mimicking Chloroplast with Enhanced Electronic Energy Transfer for Biocatalyzed Artificial Photosynthesis. Advanced Functional Materials, 2018, 28, 1705083.	14.9	45

Xiaoyuan Ji

#	Article	IF	CITATIONS
37	WS ₂ /g-C ₃ N ₄ composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis. RSC Advances, 2018, 8, 20557-20567.	3.6	42
38	"Ready-to-use―hollow nanofiber membrane-based glucose testing strips. Analyst, The, 2014, 139, 6467-6473.	3.5	41
39	Integration of functionalized two-dimensional TaS ₂ nanosheets and an electron mediator for more efficient biocatalyzed artificial photosynthesis. Journal of Materials Chemistry A, 2017, 5, 5511-5522.	10.3	38
40	Piezo-photocatalytic effect mediating reactive oxygen species burst for cancer catalytic therapy. Materials Horizons, 2021, 8, 2273-2285.	12.2	38
41	Polyelectrolyte Doped Hollow Nanofibers for Positional Assembly of Bienzyme System for Cascade Reaction at O/W Interface. ACS Catalysis, 2014, 4, 4548-4559.	11.2	35
42	Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles. Journal of Biotechnology, 2013, 168, 212-217.	3.8	33
43	Two-dimensional highly oxidized ilmenite nanosheets equipped with Z-scheme heterojunction for regulating tumor microenvironment and enhancing reactive oxygen species generation. Chemical Engineering Journal, 2020, 390, 124524.	12.7	32
44	TiO ₂ –Horseradish Peroxidase Hybrid Catalyst Based on Hollow Nanofibers for Simultaneous Photochemical–Enzymatic Degradation of 2,4-Dichlorophenol. ACS Sustainable Chemistry and Engineering, 2016, 4, 3634-3640.	6.7	27
45	Enhanced Solar Energy Harvest and Electron Transfer through Intra- and Intermolecular Dual Channels in Chlorosome-Mimicking Supramolecular Self-Assemblies. ACS Catalysis, 2018, 8, 10732-10745.	11.2	26
46	Emerging Twoâ€Ðimensional Nanomaterials for Cancer Therapy. ChemPhysChem, 2019, 20, 2417-2433.	2.1	24
47	Boron-based nanosheets for combined cancer photothermal and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 4609-4619.	5.8	22
48	Protein-Mimicking Nanoparticles for a Cellular Regulation of Homeostasis. ACS Applied Materials & Interfaces, 2021, 13, 31331-31336.	8.0	19
49	Proteinâ€Mimicking Nanoparticles in Biosystems. Advanced Materials, 2022, 34, e2201562.	21.0	17
50	Traditional Chinese medicine molecule-assisted chemical synthesis of fluorescent anti-cancer silicon nanoparticles. Nano Research, 2018, 11, 5629-5641.	10.4	16
51	Biocompatible protamine sulfate@silicon nanoparticle-based gene nanocarriers featuring strong and stable fluorescence. Nanoscale, 2018, 10, 14455-14463.	5.6	16
52	Comprehensive insights into intracellular fate of WS ₂ nanosheets for enhanced photothermal therapeutic outcomes via exocytosis inhibition. Nanophotonics, 2019, 8, 2331-2346.	6.0	16
53	Graphene Oxide and Polyelectrolyte Composed One-Way Expressway for Guiding Electron Transfer of Integrated Artificial Photosynthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 3060-3069.	6.7	15
54	Regulation of enzyme activity and stability through positional interaction with polyurethane nanofibers. Biochemical Engineering Journal, 2017, 121, 147-155.	3.6	13

XIAOYUAN JI

#	Article	IF	CITATIONS
55	Sandwiching multiple dehydrogenases and shared cofactor between double polyelectrolytes for enhanced communication of cofactor and enzymes. Biochemical Engineering Journal, 2018, 137, 40-49.	3.6	10
56	Lâ€Seâ€methylselenocysteine sensitizes lung carcinoma to chemotherapy. Cell Proliferation, 2021, 54, e13038.	5.3	10
57	Homotypic targeting of immunomodulatory nanoparticles for enhanced peripheral and central immunity. Cell Proliferation, 2022, 55, e13192.	5.3	5
58	Controllable silicon nanostructures featuring stable fluorescence and intrinsic <i>in vitro</i> and <i>in vivo</i> anti-cancer activity. Journal of Materials Chemistry B, 2019, 7, 6247-6256.	5.8	3