Weijun Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2357127/publications.pdf

Version: 2024-02-01

		361045	552369
26	1,593	20	26
papers	citations	h-index	g-index
26	26	26	1117
all docs	docs citations	times ranked	citing authors
200	3.5.5.5.5.3.4.4.4.6.2.2.6		
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Realizing an Allâ€Round Hydrogel Electrolyte toward Environmentally Adaptive Dendriteâ€Free Aqueous Zn–MnO ₂ Batteries. Advanced Materials, 2021, 33, e2007559.	11.1	250
2	Anti-freezing flexible aqueous Zn–MnO ₂ batteries working at Ⱂ35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. Journal of Materials Chemistry A, 2020, 8, 6828-6841.	5.2	196
3	High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. Journal of Materials Chemistry A, 2019, 7, 26524-26532.	5.2	183
4	Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries. Journal of Colloid and Interface Science, 2020, 577, 256-264.	5.0	103
5	Simplified Synthesis of Fluoride-Free Ti ₃ C ₂ T _{<i>x</i>} via Electrochemical Etching toward High-Performance Electrochemical Capacitors. ACS Nano, 2022, 16, 2461-2470.	7.3	99
6	An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. Journal of Materials Chemistry A, 2020, 8, 8397-8409.	5.2	98
7	Molten salt synthesis of $\hat{l}\pm$ -MnO2/Mn2O3 nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54, 475-481.	7.1	56
8	Flexible free-standing paper electrodes based on reduced graphene oxide l´i-NaxV2O5·nH2O nanocomposite for high-performance aqueous zinc-ion batteries. Electrochimica Acta, 2019, 328, 135137.	2.6	54
9	Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. Journal of Energy Chemistry, 2021, 52, 377-384.	7.1	53
10	Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. Journal of Colloid and Interface Science, 2021, 586, 362-370.	5.0	48
11	Rod-like anhydrous V ₂ O ₅ assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries. RSC Advances, 2019, 9, 30556-30564.	1.7	46
12	Hybridizing \hat{l} -type NaxV2O5 \hat{A} -nH2O with graphene towards high-performance aqueous zinc-ion batteries. Electrochimica Acta, 2019, 321, 134689.	2.6	45
13	High-Performance Anti-freezing Flexible Zn-MnO2 Battery Based on Polyacrylamide/Graphene Oxide/Ethylene Glycol Gel Electrolyte. Frontiers in Chemistry, 2020, 8, 603.	1.8	45
14	Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energy Storage Materials, 2021, 39, 250-258.	9.5	44
15	Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 486-494.	5.0	38
16	Electrodeposition of MnO2 nanoflakes onto carbon nanotube film towards high-performance flexible quasi-solid-state Zn-MnO2 batteries. Journal of Electroanalytical Chemistry, 2020, 873, 114392.	1.9	37
17	Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries. Chemical Engineering Journal, 2022, 446, 137056.	6.6	36
18	Integrated design of aqueous zinc-ion batteries based on dendrite-free zinc microspheres/carbon nanotubes/nanocellulose composite film anode. Journal of Colloid and Interface Science, 2021, 594, 389-397.	5.0	34

#	Article	IF	CITATIONS
19	Interface Engineering of Silicon and Carbon by Forming a Graded Protective Sheath for High-Capacity and Long-Durable Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15216-15225.	4.0	31
20	Self-initiated coating of polypyrrole on MnO2/Mn2O3 nanocomposite for high-performance aqueous zinc-ion batteries. Applied Surface Science, 2021, 545, 149041.	3.1	28
21	Flexible Ti ₃ C ₂ T _{<i>x</i><_{/Nanocellulose Hybrid Film as a Stable Zn-free Anode for Aqueous Hybrid Zn–Li Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 6876-6884.}}	4.0	16
22	Artificial solid electrolyte interface layer based on sodium titanate hollow microspheres assembled by nanotubes to stabilize zinc metal electrodes. Journal of Energy Chemistry, 2022, 71, 539-546.	7.1	15
23	Hybridizing δ-Type MnO2 With Lignin-Derived Porous Carbon as a Stable Cathode Material for Aqueous Zn–MnO2 Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	13
24	Large areal capacity all-in-one lithium-ion battery based on boron-doped silicon/carbon hybrid anode material and cellulose framework. Journal of Colloid and Interface Science, 2022, 612, 679-688.	5.0	13
25	Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery. Nano Research, 2022, 15, 6156-6167.	5.8	10
26	Rendering Wood Veneers Flexible and Electrically Conductive through Delignification and Electroless Ni Plating. Materials, 2019, 12, 3198.	1.3	2